Ako napísať kvadratickú rovnicu ako súčin. Redukovaná kvadratická rovnica

Prvá úroveň

Kvadratické rovnice. Komplexný sprievodca (2019)

V termíne "kvadratická rovnica" je kľúčové slovo "kvadratická". To znamená, že rovnica musí nevyhnutne obsahovať premennú (rovnaké X) v štvorci a zároveň by nemali byť X v treťom (alebo väčšom) stupni.

Riešenie mnohých rovníc sa redukuje na riešenie kvadratických rovníc.

Naučme sa určiť, že máme kvadratickú rovnicu a nie nejakú inú.

Príklad 1

Zbavte sa menovateľa a vynásobte každý člen rovnice

Presuňme všetko na ľavú stranu a usporiadajme členy v zostupnom poradí podľa mocniny x

Teraz môžeme s istotou povedať, že táto rovnica je kvadratická!

Príklad 2

Vynásobte ľavú a pravú stranu:

Táto rovnica, hoci v nej pôvodne bola, nie je štvorec!

Príklad 3

Všetko vynásobme:

desivé? Štvrtý a druhý stupeň ... Ak však urobíme náhradu, uvidíme, že máme jednoduchú kvadratickú rovnicu:

Príklad 4

Zdá sa, že áno, ale pozrime sa na to bližšie. Presuňme všetko na ľavú stranu:

Vidíte, zmenšil sa - a teraz je to jednoduché lineárna rovnica!

Teraz skúste sami určiť, ktoré z nasledujúcich rovníc sú kvadratické a ktoré nie:

Príklady:

odpovede:

  1. námestie;
  2. námestie;
  3. nie štvorcový;
  4. nie štvorcový;
  5. nie štvorcový;
  6. námestie;
  7. nie štvorcový;
  8. námestie.

Matematici podmienečne rozdeľujú všetky kvadratické rovnice do nasledujúcich typov:

  • Kompletné kvadratické rovnice- rovnice, v ktorých koeficienty a aj voľný člen c sa nerovnajú nule (ako v príklade). Okrem toho medzi úplnými kvadratickými rovnicami sú daný sú rovnice, v ktorých koeficient (rovnica z príkladu 1 je nielen úplná, ale aj redukovaná!)
  • Neúplné kvadratické rovnice- rovnice, v ktorých sa koeficient alebo voľný člen c rovnajú nule:

    Sú neúplné, pretože v nich chýba nejaký prvok. Ale rovnica musí vždy obsahovať x na druhú !!! Inak to už nebude kvadratická, ale nejaká iná rovnica.

Prečo prišli s takýmto rozdelením? Zdalo by sa, že existuje X na druhú a v poriadku. Takéto rozdelenie je spôsobené metódami riešenia. Uvažujme o každom z nich podrobnejšie.

Riešenie neúplných kvadratických rovníc

Najprv sa zamerajme na riešenie neúplných kvadratických rovníc – sú oveľa jednoduchšie!

Neúplné kvadratické rovnice sú typov:

  1. , v tejto rovnici je koeficient rovný.
  2. , v tejto rovnici sa voľný člen rovná.
  3. , v tejto rovnici sa koeficient a voľný člen rovnajú.

1. i. Keďže vieme, ako extrahovať Odmocnina, potom vyjadrime z tejto rovnice

Výraz môže byť negatívny alebo pozitívny. Druhé číslo nemôže byť záporné, pretože pri vynásobení dvoch záporných alebo dvoch kladných čísel bude výsledkom vždy kladné číslo, takže: ak, potom rovnica nemá riešenia.

A ak, potom dostaneme dva korene. Tieto vzorce sa netreba učiť naspamäť. Hlavná vec je, že by ste mali vždy vedieť a pamätať si, že to nemôže byť menej.

Skúsme vyriešiť niekoľko príkladov.

Príklad 5:

Vyriešte rovnicu

Teraz zostáva extrahovať koreň z ľavej a pravej časti. Koniec koncov, pamätáte si, ako extrahovať korene?

odpoveď:

Nikdy nezabudnite na korene so záporným znamienkom!!!

Príklad 6:

Vyriešte rovnicu

odpoveď:

Príklad 7:

Vyriešte rovnicu

Ou! Druhá mocnina čísla nemôže byť záporná, čo znamená, že rovnica

žiadne korene!

Pre také rovnice, v ktorých nie sú žiadne korene, matematici prišli so špeciálnou ikonou - (prázdna množina). A odpoveď môže byť napísaná takto:

odpoveď:

Táto kvadratická rovnica má teda dva korene. Neexistujú žiadne obmedzenia, pretože sme nevyťažili koreň.
Príklad 8:

Vyriešte rovnicu

Vyberme spoločný faktor zo zátvoriek:

Touto cestou,

Táto rovnica má dva korene.

odpoveď:

Najjednoduchší typ neúplných kvadratických rovníc (hoci sú všetky jednoduché, však?). Je zrejmé, že táto rovnica má vždy iba jeden koreň:

Tu sa zaobídeme bez príkladov.

Riešenie úplných kvadratických rovníc

Pripomíname, že úplná kvadratická rovnica je rovnica tvaru rovnice kde

Riešenie úplných kvadratických rovníc je o niečo zložitejšie (iba o trochu) ako tie, ktoré sú uvedené.

zapamätaj si, pomocou diskriminantu je možné vyriešiť akúkoľvek kvadratickú rovnicu! Dokonca neúplné.

Ostatné metódy vám pomôžu rýchlejšie to urobiť, ale ak máte problémy s kvadratickými rovnicami, najskôr si osvojte riešenie pomocou diskriminantu.

1. Riešenie kvadratických rovníc pomocou diskriminantu.

Riešenie kvadratických rovníc týmto spôsobom je veľmi jednoduché, hlavnou vecou je zapamätať si postupnosť akcií a niekoľko vzorcov.

Ak, potom má rovnica koreň. Osobitná pozornosť by sa mala venovať kroku. Diskriminant () nám udáva počet koreňov rovnice.

  • Ak, potom sa vzorec v kroku zredukuje na. Rovnica teda bude mať iba koreň.
  • Ak, potom nebudeme môcť extrahovať koreň diskriminantu v kroku. To znamená, že rovnica nemá korene.

Vráťme sa k našim rovniciam a pozrime sa na niekoľko príkladov.

Príklad 9:

Vyriešte rovnicu

Krok 1 preskočiť.

Krok 2

Nájdenie diskriminantu:

Takže rovnica má dva korene.

Krok 3

odpoveď:

Príklad 10:

Vyriešte rovnicu

Rovnica je v štandardnom tvare, takže Krok 1 preskočiť.

Krok 2

Nájdenie diskriminantu:

Takže rovnica má jeden koreň.

odpoveď:

Príklad 11:

Vyriešte rovnicu

Rovnica je v štandardnom tvare, takže Krok 1 preskočiť.

Krok 2

Nájdenie diskriminantu:

To znamená, že nebudeme môcť extrahovať koreň z diskriminantu. Neexistujú žiadne korene rovnice.

Teraz už vieme, ako si takéto odpovede správne zapísať.

odpoveď:žiadne korene

2. Riešenie kvadratických rovníc pomocou Vietovej vety.

Ak si pamätáte, potom existuje taký typ rovníc, ktoré sa nazývajú redukované (keď sa koeficient a rovná):

Takéto rovnice sa dajú veľmi ľahko vyriešiť pomocou Vietovej vety:

Súčet koreňov daný kvadratická rovnica sa rovná a súčin koreňov sa rovná.

Príklad 12:

Vyriešte rovnicu

Táto rovnica je vhodná na riešenie pomocou Vietovej vety, pretože .

Súčet koreňov rovnice je, t.j. dostaneme prvú rovnicu:

A produkt je:

Poďme vytvoriť a vyriešiť systém:

  • A Súčet je;
  • A Súčet je;
  • A Suma je rovnaká.

a sú riešením systému:

odpoveď: ; .

Príklad 13:

Vyriešte rovnicu

odpoveď:

Príklad 14:

Vyriešte rovnicu

Rovnica je redukovaná, čo znamená:

odpoveď:

KVADRATICKÉ ROVNICE. PRIEMERNÁ ÚROVEŇ

Čo je to kvadratická rovnica?

Inými slovami, kvadratická rovnica je rovnica tvaru, kde navyše - neznáme, - nejaké čísla.

Číslo sa nazýva najvyššie resp prvý koeficient kvadratická rovnica, - druhý koeficient, ale - voľný člen.

prečo? Pretože ak, rovnica sa okamžite stane lineárnou, pretože zmizne.

V tomto prípade a môže byť rovný nule. V tejto stolici sa rovnica nazýva neúplná. Ak sú všetky pojmy na mieste, to znamená, že rovnica je úplná.

Riešenie rôznych typov kvadratických rovníc

Metódy riešenia neúplných kvadratických rovníc:

Na začiatok si rozoberieme metódy riešenia neúplných kvadratických rovníc - sú jednoduchšie.

Je možné rozlíšiť nasledujúce typy rovníc:

I. , v tejto rovnici sa koeficient a voľný člen rovnajú.

II. , v tejto rovnici je koeficient rovný.

III. , v tejto rovnici sa voľný člen rovná.

Teraz zvážte riešenie každého z týchto podtypov.

Je zrejmé, že táto rovnica má vždy iba jeden koreň:

Druhá mocnina nemôže byť záporná, pretože pri vynásobení dvoch záporných alebo dvoch kladných čísel bude výsledkom vždy kladné číslo. Preto:

ak, potom rovnica nemá riešenia;

ak máme dva korene

Tieto vzorce sa netreba učiť naspamäť. Hlavná vec na zapamätanie je, že to nemôže byť menej.

Príklady:

Riešenia:

odpoveď:

Nikdy nezabudnite na korene so záporným znamienkom!

Druhá mocnina čísla nemôže byť záporná, čo znamená, že rovnica

žiadne korene.

Aby sme stručne napísali, že problém nemá riešenia, použijeme ikonu prázdnej sady.

odpoveď:

Takže táto rovnica má dva korene: a.

odpoveď:

Vyberme spoločný faktor zo zátvoriek:

Súčin sa rovná nule, ak sa aspoň jeden z faktorov rovná nule. To znamená, že rovnica má riešenie, keď:

Takže táto kvadratická rovnica má dva korene: a.

Príklad:

Vyriešte rovnicu.

Riešenie:

Rozdelíme ľavú stranu rovnice na faktor a nájdeme korene:

odpoveď:

Metódy riešenia úplných kvadratických rovníc:

1. Diskriminačný

Riešenie kvadratických rovníc týmto spôsobom je jednoduché, hlavnou vecou je zapamätať si postupnosť akcií a niekoľko vzorcov. Pamätajte, že každá kvadratická rovnica môže byť vyriešená pomocou diskriminantu! Dokonca neúplné.

Všimli ste si koreň diskriminantu v koreňovom vzorci? Ale diskriminant môže byť negatívny. Čo robiť? Osobitnú pozornosť musíme venovať kroku 2. Diskriminant nám hovorí počet koreňov rovnice.

  • Ak, potom rovnica má koreň:
  • Ak, potom má rovnica rovnaký koreň, ale v skutočnosti jeden koreň:

    Takéto korene sa nazývajú dvojité korene.

  • Ak, potom koreň diskriminantu nie je extrahovaný. To znamená, že rovnica nemá korene.

Prečo existujú rôzne počty koreňov? Obráťme sa na geometrický zmysel kvadratická rovnica. Grafom funkcie je parabola:

V konkrétnom prípade, ktorým je kvadratická rovnica, . A to znamená, že korene kvadratickej rovnice sú priesečníky s osou x (os). Parabola nemusí vôbec pretínať os, alebo ju môže pretínať v jednom (keď vrchol paraboly leží na osi) alebo dvoch bodoch.

Okrem toho je koeficient zodpovedný za smer vetiev paraboly. Ak, potom vetvy paraboly smerujú nahor a ak - potom nadol.

Príklady:

Riešenia:

odpoveď:

Odpoveď: .

odpoveď:

To znamená, že neexistujú žiadne riešenia.

Odpoveď: .

2. Vietova veta

Použitie Vietovej vety je veľmi jednoduché: stačí si vybrať pár čísel, ktorých súčin sa rovná voľnému členu rovnice a súčet sa rovná druhému koeficientu s opačným znamienkom.

Je dôležité si uvedomiť, že Vietovu vetu je možné aplikovať iba na ňu dané kvadratické rovnice ().

Pozrime sa na niekoľko príkladov:

Príklad č. 1:

Vyriešte rovnicu.

Riešenie:

Táto rovnica je vhodná na riešenie pomocou Vietovej vety, pretože . Ostatné koeficienty: ; .

Súčet koreňov rovnice je:

A produkt je:

Vyberme také dvojice čísel, ktorých súčin sa rovná, a skontrolujte, či sa ich súčet rovná:

  • A Súčet je;
  • A Súčet je;
  • A Suma je rovnaká.

a sú riešením systému:

Tak, a sú korene našej rovnice.

Odpoveď: ; .

Príklad č. 2:

Riešenie:

Vyberieme také dvojice čísel, ktoré sú v súčine, a potom skontrolujeme, či sa ich súčet rovná:

a: dať celkom.

a: dať celkom. Aby ste to dosiahli, stačí zmeniť znaky údajných koreňov: a koniec koncov aj prácu.

odpoveď:

Príklad č. 3:

Riešenie:

Voľný člen rovnice je záporný, a preto je súčin koreňov záporné číslo. To je možné len vtedy, ak je jeden z koreňov negatívny a druhý pozitívny. Takže súčet koreňov je rozdiely ich modulov.

Vyberáme také dvojice čísel, ktoré dávajú súčinu a ktorých rozdiel sa rovná:

a: ich rozdiel je - nevhodný;

a: - nevhodné;

a: - nevhodné;

a: - vhodné. Zostáva len pamätať na to, že jeden z koreňov je negatívny. Keďže ich súčet sa musí rovnať, potom koreň, ktorý je v absolútnej hodnote menší, musí byť záporný: . Kontrolujeme:

odpoveď:

Príklad č. 4:

Vyriešte rovnicu.

Riešenie:

Rovnica je redukovaná, čo znamená:

Voľný termín je záporný, a teda súčin koreňov je záporný. A to je možné len vtedy, keď je jeden koreň rovnice záporný a druhý kladný.

Vyberieme také dvojice čísel, ktorých súčin je rovnaký, a potom určíme, ktoré korene by mali mať záporné znamienko:

Je zrejmé, že iba korene a sú vhodné pre prvý stav:

odpoveď:

Príklad č. 5:

Vyriešte rovnicu.

Riešenie:

Rovnica je redukovaná, čo znamená:

Súčet koreňov je záporný, čo znamená, že aspoň jeden z koreňov je záporný. Ale keďže ich produkt je pozitívny, znamená to, že oba korene sú mínusové.

Vyberáme také dvojice čísel, ktorých súčin sa rovná:

Je zrejmé, že korene sú čísla a.

odpoveď:

Súhlasím, je to veľmi výhodné - vymýšľať korene ústne, namiesto počítania tohto škaredého diskriminátora. Pokúste sa čo najčastejšie používať Vietovu vetu.

Ale veta Vieta je potrebná, aby sa uľahčilo a urýchlilo hľadanie koreňov. Ak chcete, aby bolo pre vás jeho používanie rentabilné, musíte akcie zautomatizovať. A preto vyriešte ďalších päť príkladov. Ale nepodvádzajte: nemôžete použiť diskriminant! Iba Vietova veta:

Riešenia úloh pre samostatnú prácu:

Úloha 1. ((x)^(2))-8x+12=0

Podľa Vietovej vety:

Ako obvykle začíname výber produktom:

Nevhodné, pretože množstvo;

: množstvo je to, čo potrebujete.

Odpoveď: ; .

Úloha 2.

A opäť naša obľúbená Vietova veta: súčet by mal vyjsť, ale súčin sa rovná.

Ale keďže by to nemalo byť, ale, meníme znamienka koreňov: a (celkovo).

Odpoveď: ; .

Úloha 3.

Hmm... kde to je?

Je potrebné preniesť všetky pojmy do jednej časti:

Súčet koreňov sa rovná súčinu.

Áno, prestaň! Rovnica nie je daná. Ale Vietov teorém je použiteľný len v daných rovniciach. Takže najprv musíte priniesť rovnicu. Ak si to neviete predstaviť, zahoďte tento nápad a vyriešte ho iným spôsobom (napríklad cez diskriminant). Dovoľte mi pripomenúť, že uviesť kvadratickú rovnicu znamená, že vedúci koeficient bude rovný:

Dobre. Potom sa súčet koreňov rovná a súčin.

Tu je ľahšie vyzdvihnúť: predsa - prvočíslo (prepáčte za tautológiu).

Odpoveď: ; .

Úloha 4.

Voľný termín je záporný. Čo je na ňom také zvláštne? A skutočnosť, že korene budú rôznych znamení. A teraz, počas výberu, nekontrolujeme súčet koreňov, ale rozdiel medzi ich modulmi: tento rozdiel je rovnaký, ale súčin.

Korene sú teda rovnaké a, ale jeden z nich je s mínusom. Vietova veta nám hovorí, že súčet koreňov sa rovná druhému koeficientu s opačným znamienkom, tzn. To znamená, že menší koreň bude mať mínus: a od.

Odpoveď: ; .

Úloha 5.

Čo je potrebné urobiť ako prvé? Správne, uveďte rovnicu:

Opäť: vyberieme faktory čísla a ich rozdiel by sa mal rovnať:

Korene sú rovnaké a, ale jeden z nich je mínus. ktoré? Ich súčet sa musí rovnať, čo znamená, že s mínusom bude väčší koreň.

Odpoveď: ; .

Zhrniem:
  1. Vietova veta sa používa iba v daných kvadratických rovniciach.
  2. Pomocou Vietovej vety môžete nájsť korene výberom, ústne.
  3. Ak rovnica nie je daná alebo sa nenašla vhodná dvojica faktorov voľného člena, potom neexistujú celé korene a musíte to vyriešiť iným spôsobom (napríklad cez diskriminant).

3. Metóda výberu plného štvorca

Ak sú všetky členy obsahujúce neznámu reprezentované ako členy zo vzorcov skráteného násobenia - druhá mocnina súčtu alebo rozdielu - potom po zmene premenných môže byť rovnica reprezentovaná ako neúplná kvadratická rovnica typu.

Napríklad:

Príklad 1:

Vyriešte rovnicu: .

Riešenie:

odpoveď:

Príklad 2:

Vyriešte rovnicu: .

Riešenie:

odpoveď:

Vo všeobecnosti bude transformácia vyzerať takto:

To znamená: .

Nič vám to nepripomína? To je diskriminant! Presne tak bol získaný diskriminačný vzorec.

KVADRATICKÉ ROVNICE. STRUČNE O HLAVNOM

Kvadratická rovnica je rovnica tvaru, kde je neznáma, sú koeficienty kvadratickej rovnice, je voľný člen.

Kompletná kvadratická rovnica- rovnica, v ktorej sa koeficienty nerovnajú nule.

Redukovaná kvadratická rovnica- rovnica, v ktorej je koeficient, teda: .

Neúplná kvadratická rovnica- rovnica, v ktorej sa koeficient alebo voľný člen c rovnajú nule:

  • ak koeficient, rovnica má tvar: ,
  • ak je voľný člen, rovnica má tvar: ,
  • ak a, rovnica má tvar: .

1. Algoritmus riešenia neúplných kvadratických rovníc

1.1. Neúplná kvadratická rovnica tvaru, kde:

1) Vyjadrite neznáme: ,

2) Skontrolujte znamienko výrazu:

  • ak, potom rovnica nemá riešenia,
  • ak, tak rovnica má dva korene.

1.2. Neúplná kvadratická rovnica tvaru, kde:

1) Vyberme spoločný faktor zo zátvoriek: ,

2) Súčin sa rovná nule, ak sa aspoň jeden z faktorov rovná nule. Preto má rovnica dva korene:

1.3. Neúplná kvadratická rovnica tvaru, kde:

Táto rovnica má vždy len jeden koreň: .

2. Algoritmus na riešenie úplných kvadratických rovníc v tvare kde

2.1. Riešenie pomocou diskriminantu

1) Privedieme rovnicu do štandardná forma: ,

2) Vypočítajte diskriminant pomocou vzorca: , ktorý udáva počet koreňov rovnice:

3) Nájdite korene rovnice:

  • ak, potom rovnica má koreň, ktorý sa nachádza podľa vzorca:
  • ak, potom rovnica má koreň, ktorý sa nachádza podľa vzorca:
  • ak, potom rovnica nemá korene.

2.2. Riešenie pomocou Vietovej vety

Súčet koreňov redukovanej kvadratickej rovnice (rovnice tvaru kde) sa rovná a súčin koreňov sa rovná, t.j. , ale.

2.3. Úplné štvorcové riešenie

Kvadratické rovnice sa študujú v 8. ročníku, takže tu nie je nič zložité. Schopnosť ich vyriešiť je nevyhnutná.

Kvadratická rovnica je rovnica v tvare ax 2 + bx + c = 0, kde koeficienty a, b a c sú ľubovoľné čísla a a ≠ 0.

Pred štúdiom konkrétnych metód riešenia si všimneme, že všetky kvadratické rovnice možno rozdeliť do troch tried:

  1. Nemať korene;
  2. Majú presne jeden koreň;
  3. Majú dva rôzne korene.

Toto je dôležitý rozdiel medzi kvadratickými a lineárnymi rovnicami, kde koreň vždy existuje a je jedinečný. Ako určiť, koľko koreňov má rovnica? Je na to úžasná vec - diskriminačný.

Diskriminačný

Nech je daná kvadratická rovnica ax 2 + bx + c = 0. Potom je diskriminantom jednoducho číslo D = b 2 − 4ac .

Tento vzorec musí byť známy naspamäť. Odkiaľ pochádza, nie je teraz dôležité. Ďalšia vec je dôležitá: podľa znamienka diskriminantu môžete určiť, koľko koreňov má kvadratická rovnica. menovite:

  1. Ak D< 0, корней нет;
  2. Ak D = 0, existuje práve jeden koreň;
  3. Ak D > 0, budú existovať dva korene.

Upozorňujeme: diskriminant označuje počet koreňov a vôbec nie ich znaky, ako si z nejakého dôvodu mnohí ľudia myslia. Pozrite si príklady a sami všetko pochopíte:

Úloha. Koľko koreňov majú kvadratické rovnice:

  1. x 2 - 8 x + 12 = 0;
  2. 5x2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Napíšeme koeficienty pre prvú rovnicu a nájdeme diskriminant:
a = 1, b = -8, c = 12;
D = (−8) 2 − 4 1 12 = 64 − 48 = 16

Takže diskriminant je kladný, takže rovnica má dva rôzne korene. Druhú rovnicu analyzujeme rovnakým spôsobom:
a = 5; b = 3; c = 7;
D \u003d 3 2 - 4 5 7 \u003d 9 - 140 \u003d -131.

Diskriminant je negatívny, neexistujú žiadne korene. Ostáva posledná rovnica:
a = 1; b = -6; c = 9;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

Diskriminant sa rovná nule - koreň bude jedna.

Všimnite si, že koeficienty boli napísané pre každú rovnicu. Áno, je to dlhé, áno, je to zdĺhavé – ale nebudete si miešať šance a neurobíte hlúpe chyby. Vyberte si sami: rýchlosť alebo kvalitu.

Mimochodom, ak si „naplníte ruku“, po chvíli už nebudete musieť vypisovať všetky koeficienty. Takéto operácie budete vykonávať v hlave. Väčšina ľudí to začne robiť niekde po 50-70 vyriešených rovniciach - vo všeobecnosti nie tak veľa.

Korene kvadratickej rovnice

Teraz prejdime k riešeniu. Ak je diskriminant D > 0, korene možno nájsť pomocou vzorcov:

Základný vzorec pre korene kvadratickej rovnice

Keď D = 0, môžete použiť ktorýkoľvek z týchto vzorcov - dostanete rovnaké číslo, ktoré bude odpoveďou. Nakoniec, ak D< 0, корней нет — ничего считать не надо.

  1. x 2 - 2 x - 3 = 0;
  2. 15 - 2x - x2 = 0;
  3. x2 + 12x + 36 = 0.

Prvá rovnica:
x 2 - 2x - 3 = 0 ⇒ a = 1; b = -2; c = -3;
D = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ rovnica má dva korene. Poďme ich nájsť:

Druhá rovnica:
15 − 2x − x 2 = 0 ⇒ a = −1; b = -2; c = 15;
D = (−2) 2 − 4 (−1) 15 = 64.

D > 0 ⇒ rovnica má opäť dva korene. Poďme ich nájsť

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \end(zarovnať)\]

Nakoniec tretia rovnica:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 1 36 = 0.

D = 0 ⇒ rovnica má jeden koreň. Je možné použiť akýkoľvek vzorec. Napríklad ten prvý:

Ako vidíte z príkladov, všetko je veľmi jednoduché. Ak poznáte vzorce a viete počítať, nebudú žiadne problémy. Najčastejšie sa chyby vyskytujú, keď sa do vzorca nahrádzajú záporné koeficienty. Tu opäť pomôže technika opísaná vyššie: pozrite sa na vzorec doslova, namaľte každý krok - a zbavte sa chýb veľmi skoro.

Neúplné kvadratické rovnice

Stáva sa, že kvadratická rovnica je trochu odlišná od toho, čo je uvedené v definícii. Napríklad:

  1. x2 + 9x = 0;
  2. x2 − 16 = 0.

Je ľahké vidieť, že jeden z výrazov v týchto rovniciach chýba. Takéto kvadratické rovnice sa riešia ešte ľahšie ako štandardné: nepotrebujú ani počítať diskriminant. Predstavme si teda nový koncept:

Rovnicu ax 2 + bx + c = 0 nazývame neúplnou kvadratickou rovnicou, ak b = 0 alebo c = 0, t.j. koeficient premennej x alebo voľného prvku sa rovná nule.

Samozrejme, je možný veľmi ťažký prípad, keď sa oba tieto koeficienty rovnajú nule: b \u003d c \u003d 0. V tomto prípade má rovnica tvar ax 2 \u003d 0. Je zrejmé, že takáto rovnica má jedinú koreň: x \u003d 0.

Pozrime sa na ďalšie prípady. Nech b \u003d 0, potom dostaneme neúplnú kvadratickú rovnicu tvaru ax 2 + c \u003d 0. Poďme ju mierne transformovať:

Keďže aritmetická druhá odmocnina existuje len z nezáporného čísla, posledná rovnosť má zmysel len vtedy, keď (−c / a ) ≥ 0. Záver:

  1. Ak neúplná kvadratická rovnica v tvare ax 2 + c = 0 spĺňa nerovnosť (−c / a ) ≥ 0, korene budú dva. Vzorec je uvedený vyššie;
  2. Ak (-c / a)< 0, корней нет.

Ako vidíte, diskriminant nebol potrebný - v neúplných kvadratických rovniciach neexistujú vôbec žiadne zložité výpočty. V skutočnosti si ani netreba pamätať nerovnosť (−c / a ) ≥ 0. Stačí vyjadriť hodnotu x 2 a pozrieť sa, čo je na druhej strane znamienka rovnosti. Ak existuje kladné číslo, budú existovať dva korene. Ak je negatívny, nebudú tam žiadne korene.

Teraz sa pozrime na rovnice tvaru ax 2 + bx = 0, v ktorých sa voľný prvok rovná nule. Všetko je tu jednoduché: vždy budú existovať dva korene. Polynóm stačí faktorizovať:

Vyňatie spoločného faktora zo zátvorky

Súčin sa rovná nule, keď sa aspoň jeden z faktorov rovná nule. Odtiaľ pochádzajú korene. Na záver analyzujeme niekoľko z týchto rovníc:

Úloha. Riešte kvadratické rovnice:

  1. x2 − 7x = 0;
  2. 5x2 + 30 = 0;
  3. 4x2 − 9 = 0.

x 2 − 7x = 0 ⇒ x (x − 7) = 0 ⇒ x 1 = 0; x2 = −(−7)/1 = 7.

5x2 + 30 = 0 ⇒ 5x2 = -30 ⇒ x2 = -6. Neexistujú žiadne korene, pretože štvorec sa nemôže rovnať zápornému číslu.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 \u003d -1,5.

Video lekcia 2: Riešenie kvadratických rovníc

Prednáška: Kvadratické rovnice


Rovnica

Rovnica- ide o druh rovnosti, v ktorej vyjadreniach je premenná.

vyriešiť rovnicu- znamená nájsť namiesto premennej také číslo, ktoré ho privedie k správnej rovnosti.

Rovnica môže mať jedno riešenie, niekoľko riešení alebo žiadne.

Ak chcete vyriešiť akúkoľvek rovnicu, mala by byť čo najviac zjednodušená do tvaru:

Lineárne: a*x = b;

Námestie: a*x 2 + b*x + c = 0.

To znamená, že každá rovnica musí byť pred riešením prevedená do štandardného tvaru.

Každá rovnica môže byť vyriešená dvoma spôsobmi: analytickým a grafickým.

Na grafe sa za riešenie rovnice považujú body, v ktorých graf pretína os x.

Kvadratické rovnice


Rovnicu možno nazvať kvadratickou, ak má pri zjednodušení tvar:

a*x 2 + b*x + c = 0.

V čom a, b, c sú koeficienty rovnice, ktoré sa líšia od nuly. ALE "X"- koreň rovnice. Predpokladá sa, že kvadratická rovnica má dva korene alebo nemusí mať riešenie vôbec. Výsledné korene môžu byť rovnaké.

"ale"- koeficient, ktorý stojí pred odmocninou v štvorci.

"b"- stojí pred neznámym na prvom stupni.

"od"- voľný člen rovnice.

Ak máme napríklad rovnicu v tvare:

2x 2 -5x+3=0

V ňom je "2" koeficient na najvyššom člene rovnice, "-5" je druhý koeficient a "3" je voľný člen.

Riešenie kvadratickej rovnice

Existuje mnoho spôsobov, ako vyriešiť kvadratickú rovnicu. V kurze školskej matematiky sa však riešenie študuje pomocou Vietovej vety, ako aj pomocou diskriminantu.

Diskriminačné riešenie:

Pri riešení pomocou tejto metódy je potrebné vypočítať diskriminant pomocou vzorca:

Ak ste počas výpočtov zistili, že diskriminant je menší ako nula, znamená to, že táto rovnica nemá riešenia.

Ak je diskriminant nulový, potom rovnica má dve rovnaké riešenia. V tomto prípade možno polynóm zbaliť podľa skráteného vzorca násobenia na druhú mocninu súčtu alebo rozdielu. Potom to vyriešte ako lineárnu rovnicu. Alebo použite vzorec:

Ak je diskriminant väčší ako nula, potom sa musí použiť nasledujúca metóda:

Vietov teorém


Ak je rovnica znížená, to znamená, že koeficient v najvyššom člene je rovný jednej, môžete použiť Vietov teorém.

Povedzme teda, že rovnica je:

Korene rovnice nájdeme takto:

Neúplná kvadratická rovnica

Existuje niekoľko možností na získanie neúplnej kvadratickej rovnice, ktorej forma závisí od prítomnosti koeficientov.

1. Ak sa druhý a tretí koeficient rovnajú nule (b=0, c=0), potom bude kvadratická rovnica vyzerať takto:

Táto rovnica bude mať jedinečné riešenie. Rovnosť bude platiť iba vtedy, ak je riešenie rovnice nulové.

Vidiecka stredná škola Kopyevskaya

10 spôsobov riešenia kvadratických rovníc

Vedúci: Patrikeeva Galina Anatolyevna,

učiteľ matematiky

s. Kopyevo, 2007

1. História vývoja kvadratických rovníc

1.1 Kvadratické rovnice v starovekom Babylone

1.2 Ako Diophantus zostavoval a riešil kvadratické rovnice

1.3 Kvadratické rovnice v Indii

1.4 Kvadratické rovnice v al-Khwarizmi

1.5 Kvadratické rovnice v Európe XIII - XVII storočia

1.6 O Vietovej vete

2. Metódy riešenia kvadratických rovníc

Záver

Literatúra

1. História vývoja kvadratických rovníc

1.1 Kvadratické rovnice v starovekom Babylone

Potreba riešiť rovnice nielen prvého, ale aj druhého stupňa v staroveku bola spôsobená potrebou riešenia problémov súvisiacich so zisťovaním plôch zemských a zemných prác vojenského charakteru, ako aj s rozvojom astronómie a samotnú matematiku. Kvadratické rovnice boli schopné vyriešiť okolo roku 2000 pred Kristom. e. Babylončania.

Ak použijeme modernú algebraickú notáciu, môžeme povedať, že v ich klinopisných textoch sú okrem neúplných napríklad aj úplné kvadratické rovnice:

X 2 + X = ¾; X 2 - X = 14,5

Pravidlo na riešenie týchto rovníc uvedené v babylonských textoch sa v podstate zhoduje s tým moderným, ale nie je známe, ako Babylončania k tomuto pravidlu prišli. Takmer všetky doteraz nájdené klinopisné texty uvádzajú len problémy s riešeniami uvedenými vo forme receptov, bez uvedenia spôsobu ich nájdenia.

Napriek tomu vysoký stupeň vývoj algebry v Babylone, v klinopisných textoch absentuje pojem záporného čísla a všeobecné metódy riešenia kvadratických rovníc.

1.2 Ako Diophantus zostavoval a riešil kvadratické rovnice.

Diophantusova aritmetika neobsahuje systematický výklad algebry, ale obsahuje systematický rad problémov sprevádzaných vysvetleniami a riešených formulovaním rovníc rôzneho stupňa.

Pri zostavovaní rovníc Diophantus šikovne vyberá neznáme, aby zjednodušil riešenie.

Tu je napríklad jedna z jeho úloh.

Úloha 11."Nájdite dve čísla s vedomím, že ich súčet je 20 a ich súčin je 96"

Diophantus argumentuje nasledovne: z podmienky problému vyplýva, že požadované čísla sa nerovnajú, pretože ak by boli rovnaké, ich súčin by sa nerovnal 96, ale 100. Jedno z nich teda bude viac ako polovicu ich sumy, tj . 10+x, druhý je menší, t.j. 10-te roky. Rozdiel medzi nimi 2x .

Preto rovnica:

(10 + x) (10 - x) = 96

100 - x 2 = 96

x 2 – 4 = 0 (1)

Odtiaľ x = 2. Jedným z požadovaných čísel je 12 , iné 8 . Riešenie x = -2 lebo Diophantus neexistuje, keďže grécka matematika poznala len kladné čísla.

Ak tento problém vyriešime výberom jedného z požadovaných čísel ako neznámeho, prídeme k riešeniu rovnice

y(20 - y) = 96,

y 2 - 20 y + 96 = 0. (2)


Je zrejmé, že Diophantus zjednodušuje riešenie výberom polovičného rozdielu požadovaných čísel ako neznámeho; podarí sa mu problém zredukovať na riešenie neúplnej kvadratickej rovnice (1).

1.3 Kvadratické rovnice v Indii

Úlohy pre kvadratické rovnice sa už nachádzajú v astronomickom trakte „Aryabhattam“, ktorý v roku 499 zostavil indický matematik a astronóm Aryabhatta. Ďalší indický učenec, Brahmagupta (7. storočie), vysvetlil všeobecné pravidlo riešenia kvadratických rovníc zredukované na jednu kanonickú formu:

ach 2+ b x = c, a > 0. (1)

V rovnici (1) sú koeficienty okrem ale, môže byť aj negatívny. Brahmaguptove pravidlo sa v podstate zhoduje s naším.

V starovekej Indii boli verejné súťaže v riešení zložitých problémov bežné. V jednej zo starých indických kníh sa o takýchto súťažiach hovorí toto: „Ako slnko prežiari hviezdy svojou žiarou, tak vzdelaný človek zažiari slávu druhého na verejných stretnutiach, kde navrhuje a rieši algebraické problémy.“ Úlohy sa často obliekali do poetickej podoby.

Tu je jeden z problémov slávneho indického matematika 12. storočia. Bhaskara.

Úloha 13.

„Šikovný kŕdeľ opíc a dvanásť viniča...

Po najedení sily sa zabavili. Začali skákať, visieť ...

Ôsma časť z nich vo štvorci Koľko tam bolo opíc,

Zábava na lúke. Povieš mi, v tomto stáde?

Bhaskarovo riešenie naznačuje, že vedel o dvojhodnotovosti koreňov kvadratických rovníc (obr. 3).

Rovnica zodpovedajúca problému 13 je:

( X /8) 2 + 12 = X

Bhaskara píše pod zámienkou:

x 2 - 64x = -768

a na doplnenie ľavej strany tejto rovnice na štvorec pridá k obom stranám 32 2 , potom:

x 2 – 64x + 32 2 = -768 + 1024,

(x - 32) 2 = 256,

x - 32 = ± 16,

x 1 = 16, x 2 = 48.

1.4 Kvadratické rovnice v al-Khorezmi

Al-Khorezmiho algebraické pojednanie uvádza klasifikáciu lineárnych a kvadratických rovníc. Autor uvádza 6 typov rovníc, pričom ich vyjadruje takto:

1) „Štvorce sa rovnajú koreňom“, t.j. ax 2 + c = b X.

2) „Štvorce sa rovnajú číslu“, t.j. ax 2 = s.

3) "Korene sa rovnajú číslu", t.j. ah = s.

4) „Štvorce a čísla sa rovnajú odmocninám“, t.j. ax 2 + c = b X.

5) „Štvorce a odmocniny sa rovnajú číslu“, t.j. ach 2+ bx = s.

6) „Odmocniny a čísla sa rovnajú štvorcom“, t.j. bx + c \u003d sekera 2.

Pre al-Khwarizmiho, ktorý sa vyhýbal používaniu záporných čísel, sú členy každej z týchto rovníc sčítaním, nie odčítaním. V tomto prípade sa zjavne neberú do úvahy rovnice, ktoré nemajú kladné riešenia. Autor načrtáva metódy riešenia týchto rovníc pomocou metód al-jabr a al-muqabala. Jeho rozhodnutia sa, samozrejme, úplne nezhodujú s našimi. Nehovoriac o tom, že je to čisto rétorické, treba si napríklad uvedomiť, že pri riešení neúplnej kvadratickej rovnice prvého typu

al-Khorezmi, podobne ako všetci matematici pred 17. storočím, neberie do úvahy nulové riešenie, zrejme preto, že v konkrétnych praktických problémoch na ňom nezáleží. Pri riešení úplných kvadratických rovníc stanovuje al-Khorezmi pravidlá riešenia a potom geometrické dôkazy pomocou konkrétnych numerických príkladov.

Úloha 14.„Štvorec a číslo 21 sa rovnajú 10 odmocninám. Nájdite koreň" (za predpokladu, že koreň rovnice x 2 + 21 = 10x).

Autorovo riešenie znie asi takto: vydeľte počet koreňov na polovicu, dostanete 5, vynásobte sami 5, od súčinu odčítajte 21, zostáva 4. Vezmite odmocninu zo 4, dostanete 2. Odčítajte 2 od 5, získajte 3, bude to požadovaný koreň. Alebo pridajte 2 k 5, čím získate 7, to je tiež koreň.

Treatise al - Khorezmi je prvá kniha, ktorá sa k nám dostala, v ktorej je systematicky uvedená klasifikácia kvadratických rovníc a uvedené vzorce na ich riešenie.

1.5 Kvadratické rovnice v Európe XIII - XVII storočia

Vzorce na riešenie kvadratických rovníc podľa modelu al - Khorezmi v Európe boli prvýkrát uvedené v "Knihe počítadla", ktorú v roku 1202 napísal taliansky matematik Leonardo Fibonacci. Toto objemné dielo, ktoré odráža vplyv matematiky v krajinách islamu a Staroveké Grécko, sa líši úplnosťou aj prehľadnosťou prezentácie. Autor nezávisle vyvinul niekoľko nových algebraických príkladov riešenia problémov a ako prvý v Európe pristúpil k zavedeniu záporných čísel. Jeho kniha prispela k šíreniu algebraických poznatkov nielen v Taliansku, ale aj v Nemecku, Francúzsku a ďalších európskych krajinách. Mnohé úlohy z „Knihy počítadla“ prešli takmer do všetkých európskych učebníc 16. – 17. storočia. a čiastočne XVIII.

Všeobecné pravidlo na riešenie kvadratických rovníc zredukované na jednu kanonickú formu:

x 2+ bx = s,

pre všetky možné kombinácie znamienok koeficientov b , od sformuloval v Európe až v roku 1544 M. Stiefel.

Vieta má všeobecnú deriváciu vzorca na riešenie kvadratickej rovnice, ale Vieta rozpoznávala iba kladné korene. Talianski matematici Tartaglia, Cardano, Bombelli boli medzi prvými v 16. storočí. Zohľadnite okrem pozitívnych aj negatívne korene. Až v XVII storočí. Vďaka práci Girarda, Descartesa, Newtona a ďalších vedcov dostáva spôsob riešenia kvadratických rovníc moderný vzhľad.

1.6 O Vietovej vete

Vetu vyjadrujúcu vzťah medzi koeficientmi kvadratickej rovnice a jej koreňmi, nesúcu meno Vieta, sformuloval po prvý raz v roku 1591 takto: „Ak B + D vynásobeny A - A 2 , rovná sa BD, potom A rovná sa IN a rovní D ».

Aby sme porozumeli Viete, musíme si to pamätať ALE, ako každá samohláska, pre neho znamenalo neznáme (náš X), samohlásky IN, D- koeficienty pre neznáme. V jazyku modernej algebry vyššie uvedená Vietova formulácia znamená: ak

(a + b )x - x 2 = ab ,

x 2 - (a + b )x + a b = 0,

x 1 = a, x 2 = b .

Vyjadrením vzťahu medzi koreňmi a koeficientmi rovníc všeobecnými vzorcami napísanými pomocou symbolov Viet zaviedol jednotnosť v metódach riešenia rovníc. K symbolike Viety je však ešte ďaleko moderný vzhľad. Nepoznal záporné čísla, a preto pri riešení rovníc zvažoval iba prípady, keď sú všetky odmocniny kladné.

2. Metódy riešenia kvadratických rovníc

Kvadratické rovnice sú základom, na ktorom spočíva majestátna budova algebry. Kvadratické rovnice sú široko používané pri riešení goniometrických, exponenciálnych, logaritmických, iracionálnych a transcendentálnych rovníc a nerovníc. Všetci vieme, ako riešiť kvadratické rovnice od školy (8. ročník) až po maturitu.

Ciele:

  • Zaviesť koncept redukovanej kvadratickej rovnice;
  • „otvoriť“ vzťah medzi koreňmi a koeficientmi danej kvadratickej rovnice;
  • rozvíjať záujem o matematiku a na príklade Vietinho života ukázať, že matematika môže byť koníčkom.

Počas vyučovania

1. Kontrola domácich úloh

Č. 309 (g) x 1 \u003d 7, x 2 \u003d

Č. 311 (g) x 1 \u003d 2, x 2 \u003d -1

č. 312 (g) bez koreňov

2. Opakovanie preberanej látky

Každý má na stole stôl. Nájdite zhodu medzi ľavým a pravým stĺpcom tabuľky.

Slovné znenie Doslovný výraz
1. Štvorcový trojčlen A. ah2 = 0
2. Diskriminačný B. ax 2 + c \u003d 0, c< 0
3. Neúplná kvadratická rovnica, ktorá má jeden koreň rovný 0. IN.
D > 0
4. Neúplná kvadratická rovnica, ktorej jeden koreň je 0 a druhý sa nerovná 0. G.
D< 0
5. Nie úplná kvadratická rovnica, ktorej korene sú rovnaké v absolútnej hodnote, ale opačné v znamienku. D.
ax 2 + in + s \u003d 0
6. Nie je to úplná kvadratická rovnica, ktorá nemá skutočné korene. E.
D \u003d v 2 + 4ac
7. Všeobecná forma kvadratická rovnica. J.
x 2 + px + q \u003d 0
8. Podmienka, pri ktorej má kvadratická rovnica dva korene Z.
ax 2 + in + s
9. Podmienka, pri ktorej kvadratická rovnica nemá korene A.
ax 2 + c \u003d 0, c\u003e 0
10. Podmienka, pri ktorej má kvadratická rovnica dva rovnaké korene TO.
ax 2 + in = 0
11. Redukovaná kvadratická rovnica. L.
D = 0

Zaznamenajte správne odpovede do tabuľky.

1-Z; 2-E; 3-A; 4-K; 5 B; 6-I; 7-D; 8-B; 9-G; 10-1; 11-J.

3. Konsolidácia študovaného materiálu

Riešte rovnice:

a) -5x 2 + 8x -3 \u003d 0;

Riešenie:

D \u003d 64 - 4 (-5) (-3) \u003d 4,

x 1 \u003d x 2 \u003d \u003d a + b + c \u003d -5 + 8-3 \u003d 0

b) 2 x 2 + 6 x - 8 = 0;

Riešenie:

D \u003d 36 - 4 2 (-8) \u003d 100,

x 1 \u003d \u003d x 2 \u003d a + b + c \u003d 2 + 6-8 \u003d 0

c) 2009 x 2 + x - 2010 = 0

Riešenie:

a + b + c \u003d 2009 + 1 + (-2010) \u003d 0, potom x 1 \u003d 1 x 2 \u003d

4. Rozšírenie školského kurzu

ax 2 + in + c \u003d 0, ak a + b + c \u003d 0, potom x 1 \u003d 1 x 2 \u003d

Zvážte riešenie rovníc

a) 2x 2 + 5x +3 = 0

Riešenie:

D \u003d 25 -24 \u003d 1 x 1 \u003d x 2 \u003d a - b + c \u003d 2-5 + 3 \u003d 0

b) -4x 2 -5x -1 \u003d 0

Riešenie:

D \u003d 25 - 16 \u003d 9 x 1 \u003d - 1 x 2 \u003d a - c + c \u003d -4- (-5) - 1 \u003d 0

c) 1150x 2 + 1135x -15 = 0

Riešenie:

a - b + c \u003d 1150-1135 + (-15) \u003d 0 x 1 \u003d - 1 x 2 \u003d

ax 2 + in + c \u003d 0, ak a-b + c \u003d 0, potom x 1 \u003d - 1 x 2 \u003d

5. Nová téma

Pozrime sa na vašu prvú úlohu. S akými novými konceptmi ste sa stretli? 11 - f, t.j.

Daná kvadratická rovnica je x 2 + px + q \u003d 0.

Téma našej lekcie.
Vyplňte nasledujúcu tabuľku.
Ľavý stĺpec je v ich zošitoch a jeden študent je pri tabuli.
Riešenie rovnice ax 2 + in + s \u003d 0
Pravý stĺpec, pripravenejší študent pri tabuli
Riešenie rovnice x 2 + px + q \u003d 0, s a \u003d 1, b \u003d p, c \u003d q

Učiteľ (ak treba) pomáha, zvyšok v zošitoch.

6. Praktická časť

X 2 - 6 X + 8 = 0,

D \u003d 9 - 8 \u003d 1,

x 1 \u003d 3 – 1 \u003d 2

x 2 = 3 + 1 = 4

X 2 + 6 X + 8 = 0,

D \u003d 9 - 8 \u003d 0,

x 1 \u003d -3 - 1 \u003d -4

x 2 = -3 + 1 = -2

X 2 + 20 X + 51 = 0,

D \u003d 100 – 51 \u003d 49

x 1 \u003d 10 - 7 \u003d 3

x 2 = 10 + 7 = 17

X 2 - 20 X – 69 = 0,

D \u003d 100 – 69 \u003d 31

Na základe výsledkov našich výpočtov vypĺňame tabuľku.

číslo rovnice R x 1+ x 2 q x 1 x 2
1 -6 6 8 8

Porovnajme získané výsledky s koeficientmi kvadratických rovníc.
Aký záver možno vyvodiť?

7. Historické pozadie

Prvýkrát vzťah medzi koreňmi a koeficientmi kvadratickej rovnice stanovil slávny francúzsky vedec Francois Viet (1540–1603).

François Viet bol povolaním právnik a dlhé roky pôsobil ako poradca kráľa. A hoci matematika bola jeho koníčkom, či, ako sa hovorí, koníčkom, vďaka tvrdej práci v nej dosahoval skvelé výsledky. Vieta v roku 1591 zaviedol písmenové označenia pre neznáme a koeficienty rovníc. To umožnilo zapísať korene a ďalšie vlastnosti rovnice všeobecnými vzorcami.

Nevýhodou Vietovej algebry bolo, že rozoznávala len kladné čísla. Aby sa vyhol negatívnym riešeniam, nahrádzal rovnice alebo hľadal umelé riešenia, čo zaberalo veľa času, komplikovalo riešenie a často viedlo k chybám.

Vieta urobil mnoho rôznych objavov, ale on sám si najviac cenil vytvorenie vzťahu medzi koreňmi a koeficientmi kvadratickej rovnice, teda vzťahu, ktorý sa nazýva „Vietova veta“.

Túto vetu zvážime v nasledujúcej lekcii.

8. Zovšeobecňovanie poznatkov

Otázky:

  1. Ktorá rovnica sa nazýva redukovaná kvadratická rovnica?
  2. Aký vzorec možno použiť na nájdenie koreňov danej kvadratickej rovnice?
  3. Čo určuje počet koreňov danej kvadratickej rovnice?
  4. Aký je diskriminant danej kvadratickej rovnice?
  5. Ako spolu súvisia korene danej kvadratickej rovnice a jej koeficienty?
  6. Kto vytvoril toto spojenie?

9. Domáce úlohy

Ustanovenie 4.5, č. 321 (b, f) č. 322 (a, d, g, h)

Vyplňte tabuľku.

Rovnica Korene Súčet koreňov Koreňový produkt
X 2 – 8x + 7 \u003d 0 1 a 7 8 7

Literatúra

CM. Nikolského a kol., "Algebra 8" séria učebníc "MSU-school" - M.: Vzdelávanie, 2007.