Лазерное оружие России: луч смерти превратит вражеский спутник в бесполезную железяку. Что такое лазерное оружие

Сегодня расскажем об исследованиях в области лазерного оружия.

Освоит ли Сердюков «гиперболоид Путина»?

Нужно сразу сказать, что директор Центра анализа мировой торговли оружием, член Общественного совета при министерстве обороны Российской Федерации Игорь Коротченко поспешил дезавуировать макаровскую новость: «Сегодня в мире не существует боевых лазеров, кроме разве что американской ALTB (летающей военной лаборатории с прототипом лазерного оружия на борту). Все остальное – только НИОКР ». Возможно. Только ведь хороший НИОКР при достаточной политической воле способен быстро превратиться в реальное оружие. Насколько мы приблизились к этому?

Предварительная информация

Для начала несколько слов о самой идее лазерного оружия. Как известно, лазер — это оптический квантовый генератор , аббревиатура от Light Amplification by Stimulated Emission Radiation («усиление света в результате вынужденного излучения»). Со времён публикации романа о «гиперболоиде инженера Гарина» военная мысль активно ищет возможности создания лазерного оружия, которым можно было бы легко резать бронетехнику на поле боя, космические корабли, боевые ракеты.

Впоследствии некоторые ученые сосредоточились на задачах поскромнее: зачем резать, когда достаточно просто нагрева лучом обшивки в районе топливных баков, вывода из строя оптико-электронных приборов или выжигания сетчатки глаза оператора?

Словом, лазерное оружие разделилось на «прожигающее», «перегревающее», «ослепляющее», «электро-магнитно-импульсное» и даже такое экзотическое, как «проекционное» (на облака проектируют картину или фразу, которые способны деморализовать неподготовленного или суеверного противника).

Тайна танкера «Диксон»

По мнению многих экспертов, в эпоху СССР мы дальше других стран продвинулись в разработке этого вида оружия . Это был вынужденный ответ на планы США по размещению на околоземной орбите спутников-перехватчиков, предназначенных для уничтожения на начальной траектории полета советских баллистических межконтинентальных ракет. Программа получила название «Стратегическая оборонная инициатива», или, сокращенно, СОИ.

В прессе можно найти открытую информацию о том, что для уничтожения американских спутников-перехватчиков в Советском Союзе было построено несколько экспериментальных образцов космических лазерных пушек. Но на тот момент они были пока еще бесполезны, поскольку работали только при наличии мощных наземных источников питания. А значит, не могли быть установлены на военном спутнике или космической платформе.

Отработку автономности лазерной пушки решили проводить в морских условиях. Для этого использовали танкер вспомогательного флота «Диксон» . Поскольку его силовая установка была не способна выдать на пушку необходимую энергию (по некоторым данным нужно было не менее 50 мегаватт), судовые дизели усилили тремя реактивными двигателями от самолета Ту-154.

Есть сведения о том, что было проведено несколько успешных испытаний по «поражению» береговой цели, но перестройка, а затем развал СССР их остановили. Тема перестала получать финансирование, а таинственный «лазерный корабль» «Диксон» при разделе Черноморского флота достался Украине. Дальнейшая его судьба неизвестна.

Горбачев против «Скифа»

По данным военного учёного капитана первого ранга запаса Андрея Шалыгина, в СССР одновременно велись работы по созданию космического аппарата «Скиф», способного нести на себе лазерную пушку и обеспечивать ее достаточной энергией. Программу курировал тогдашний министр общего машиностроения Олег Бакланов . Во втором квартале 1987 года должен был состояться запуск этого аппарата.

Однако на ту беду на Байконур приехал Горбачев, вполне возможно, с целью закрыть именно эту беспокоящую США программу. Он собрал космическую элиту СССР в конференц-зале и заявил: «Мы категорически против переноса гонки вооружений в космос и покажем в этом пример ».

«Этот радетель интересов американского народа, по сути, совершил убийство , — вспоминает в своем эссе капитан первого ранга запаса Шалыгин. — Ибо в тот день на старте стояла ракета «Энергия» с пристыкованным сбоку 80-тонным аппаратом «Скиф-Д» — прототипом космического истребителя с лазерной пушкой ». Его создавали в рекордные сроки в НПО «Салют», под руководством Дмитрия Полухина, и сам Бакланов, работая по шестнадцать часов в сутки, давил на смежников, контролировал ход поставок.

Но речь Горбачева пустила всё коту под хвост за три дня до старта. «Скиф» был выведен на орбиту лишь для того, чтобы тут же быть брошенным на сожжение в плотные слои атмосферы . А ведь «Скифы» означали полную нашу победу в борьбе за ближний космос. Ведь каждый истребитель типа «Полёт» уничтожал всего один космический аппарат врага, погибая при этом сам. А вот «Скиф» мог долго летать на орбите, поражая своей лазерной пушкой чужаков. Его лучевое оружие не нужно было делать дальнобойным — хватило бы и двадцати-тридцати километров действия.

«Ведь американцам приходилось ломать голову над станциями, бьющими на тысячу километров по мчащимся с бешеной скоростью маленьким бронированным боеголовкам. Жертвами же «Скифа» предполагались легкоуязвимые орбитальные спутники , которые он сбивал бы на догоне, когда скорость цели относительно преследующего её охотника — поистине черепашья. Да и для точности выстрела лазером не нужны были особые суперкомпьютеры. И флот «Скифов» гарантированно разносил в клочки всю низкоорбитальную группировку военных спутников США».

Всё это не состоялось, но научно-техническая база осталась и является хорошей основой для современных разработчиков. Как же ей распорядились новые власти России?

«Стилет» отправили на свалку

Следующим за «Скифом» в КБ «Салют» планировалось создать аппарат «Скиф-Стилет» . На нём собирались установить бортовой специальный комплекс (БСК) 1К11 «Стилет», разработанный в НПО «Астрофизика». Он представлял собой вариант наземного «Стилета», уже созданной и принятой на вооружение «десятиствольной» установки инфракрасных лазеров, работающих на длине волны 1,06 нм.

Однако, наземный «Стилет» не предназначался для разрушения или уничтожения техники противника. Этого просто не позволяла земная атмосфера и энергетика. Лазеры предназначались для вывода из строя прицелов и датчиков оптических устройств. В космосе за счёт вакуума радиус их действия значительно увеличивался. «Стилет — космический» вполне можно было применять как противоспутниковое средство. Ведь выход из строя оптических датчиков космического аппарата противника был равносилен гибели спутника.

Что стало с этим проектом неизвестно: хочется надеяться, что он как-то продолжает развиваться . Возможно, о каком-то его варианте и говорил начальник Генштаба.

Что касается уже принятого на вооружение наземного «Стилета», то судьба его печальна. По данным «Википедии», один из двух принятых на вооружение экземпляров был найден любителями бронетанковой техники на свалке 61-ого бронетанкового ремонтного завода в Санкт-Петербурге. К настоящему времени, предположительно, машина утилизирована. Второй экземпляр был также найден любителями-энтузиастами в 2010 году на танковом ремонтном заводе № 171. От машины осталось только шасси, всё оборудование было демонтировано.

Формально «Стилет» до сих пор состоит на вооружении Российской армии. А может быть, это военная хитрость Сердюкова и под старый «бренд» Российскую армию тайно вооружают более совершенными лазерными комплексами?

Шоу на Красной площади

Некоторые эксперты считают, что лазерные пушки не только имеются у России, но уже даже были продемонстрированы в качестве новейшей техники, как повелось с советского времени, во время парада на Красной площади. Это произошло 9 мая 2005 года, когда на 60-летие Победы в гости к Путину пожаловали практически все лидеры крупных государств. Тогдашний президент России решил продемонстрировать им то, что военные остряки тут же окрестили «гиперболоидом Путина».

Андрей Шалыгин вспоминает об этом так :

«Грандиозное шоу заключалось вовсе не в гусарах, бывших «полуторках» (закамуфлированных «трёхтонках»), или шикарном концерте. Самое большое шоу представляли из себя шесть боевых машин, которые стояли по три с обоих концов Красной площади всё время представления. Конечно, с них были сняты «боевые блоки» и «оконечные устройства». Обыватель ничего не понял. Но военные ученые оценили это явление.

Впервые в мире все воочию увидели те самые «лазерные пушки», причем не «прототипы», а серийные машины . Конечно, это были только «шасси» (как и раньше с баллистическими ракетами, или с «Катюшами», ведь секретными являются не столько «направляющие», сколько то, что на них устанавливается; то есть в баллистической ракете – «внутренности», в «катюше» — реактивный снаряд», а в «лазерной пушке» — «боевой блок»).

Но по плану «шоу» предполагалось ещё «запустить» четыре вертолёта с установленными на них «проекционными» лазерами, чтобы «подсветить» облака Российской символикой (для этого и облака до конца не «разогнали»). Но «Большой Брат» «передумал». Оказалось достаточно шести «чучел». Что уж там послужило критерием «достаточности», — сказать трудно».

Кроме этой демонстрации и публикаций о «Стилете» никаких подробных данных о российском лазерном оружии в открытой печати нет (впрочем, это понятно – тема секретная).

Электронный справочник министерства обороны РФ «Оружие России» сообщает : «Перспективы создания боевого лазерного оружия в России эксперты в этой области, несмотря на противоречивые и недоказанные данные в связи с закрытостью этой темы, оценивают, как реалистичные. Это обусловлено, в первую очередь, бурным развитием современных технологий, расширением области использования лазерных средств для других целей, стремлением создать такое оружие и теми преимуществами, которыми оно обладает в сравнении с традиционными средствами поражения. По некоторым оценкам реальное появление боевого лазерного оружия возможно в период 2015-2020 годы».

А как дела у американцев?

Президент Академии геополитических проблем генерал-полковник Леонид Ивашов ответил на этот вопрос коротко: «Для нас опасность представляют мощные химические лазеры, размещаемые на самолетах «Боинг-747» и космических платформах . Кстати, это лазеры советских разработок, переданные в начале 90-х годов по распоряжению Б.Ельцина американцам».

Действительно, недавно в американской прессе появилось официальное заявление Пентагона об успешных наземных испытаниях боевой лазерной установки для борьбы с баллистическими ракетами, предназначенной для размещения на авиационных носителях. Агентство по противоракетной обороне получило у конгресса финансирование программы испытаний на 2011 год в размере 1 млрд. долларов.

После принятия на вооружение самолёты с лазерным комплексом должны стать составной частью национальной системы противоракетной обороны США и, по мнению американских военных, смогут уничтожать баллистические ракеты противника на начальном участке траектории. По замыслам, в основном они должны будут действовать против ракет средней дальности, а более вероятно, лишь против оперативно-тактических.

Баллистические ракеты пока лазеру не доступны . Дело в том, что поражающее действие американского лазера в идеальных условиях ограничено 320-350 км. Значит, самолет-носитель лазерного оружия должен будет барражировать в радиусе пары сотен километров от расположения ракетных установок, чтобы иметь возможность сбивать взлетающую ракету ещё на стадии разгона. И, в то же время, он должен находиться на достаточном удалении от границ противника, чтобы не опасаться его ПВО.

Позиционные районы межконтинентальных баллистических ракет расположены, как правило, в глубине территории страны, и, если самолет-носитель лазера ненароком окажется там, то будет немедленно уничтожен. То есть принятие США на вооружение лазера воздушного базирования может позволить ей лишь воспрепятствовать угрозам со стороны стран, уже освоивших ракетные технологии, но не способных обеспечить полноценную противовоздушную оборону своей территории.

Но ведь Пентагон со временем может вывести лазерное оружие в космос. Россия должна быть готова к ответным мерам. Вопрос только в том, способен ли Сердюков с компанией организовать создание и освоение столь сложной техники? Ход проводимых им реформ не располагает к положительному ответу.

Лучевое оружие известно человечеству еще со времен Архимеда. Но с изобретением лазера оно получило все шансы стать грозной силой. Оптический квантовый генератор, лазер, разработанный в середине XX века, нашел практическое применение во многих областях человеческой деятельности — науке, промышленности, медицине. Не могли оставить его без внимания и военные. Немного остыв после Второй мировой, недавние союзники вступили в холодную войну, взявшись за создание различного оружия. Вслед за появлением по обе стороны океана межконтинентальных ракет проблема противоракетной обороны(ПРО) приобрела первостепенную важность.

В 1963 году заместитель министра обороны СССР Гречко обратился к президенту АН СССР академику Келдышу с просьбой рассмотреть возможность использования лазеров для ПРО и иных военных целей. Келдыш переадресовал вопрос в ФИАН академику Басову. Для боевого применения требовались лазеры с энергией импульса не менее 10 МДж, а таких в то время просто не существовало. После предварительных расчетов Басов сообщил, что считает реальным создание такого лазера с накачкой от взрыва обычного взрывчатого вещества. Начинать пришлось почти с нуля: не существовало конструктивных решений для взрывной накачки, не было ни силовой оптики, ни кристаллов требуемых размеров, ни технологий и оборудования для изготовления неодимовых стекол.

«Терра» и «Омега»

В СССР работы выполнялись по двум программам — «Омега» (научный руководитель академик Прохоров) и «Терра-3» (научный руководитель академик Басов). В рамках «Омеги» с 1966 года велось создание наземной лазерной системы для ПВО совместно с ОКБ «Стрела» (ныне «Алмаз»). «Стрела» уже имела большой опыт разработки ЗРК ПВО, но не лазерного оружия. В качестве источника питания системы был выбран 500-МВт магнитогидродинамический (МГД) генератор с индуктивным накопителем, а излучение генерировали 96 лазерных каналов (четыре ряда по 24 канала в каждом) на основе неодимового стекла, каждый из которых имел мощность импульса 100 кДж.

Основной задачей второй советской военной лазерной программы, «Терра-3», было создание боевого лазера для ПРО, предназначенного для поражения головных частей баллистических ракет на конечном участке их траектории, то есть на подлете к цели. Планировалась разработка фотодиссоциационных лазеров с энергией импульса более 1 МДж. Идею следовало проверить в натурных условиях в научно-экспериментальном комплексе на базе полигона на берегу озера Балхаш в Казахстане. Вскоре здесь вырос закрытый для широкой публики город Приозерск. В ходе выполнения программы из ОКБ «Вымпел» выделилось ЦКБ «Луч», ставшее впоследствии НПО «Астрофизика» — головной организацией «Терра-3».

В рамках «Терра-3» занимались лазерной локацией, в том числе разработкой методики и технологии наведения луча, созданием так называемой силовой оптики, изучением (теоретическим и экспериментальным) распространения лазерного излучения в атмосфере, исследованием взаимодействия лазерного излучения с различными материалами и определением таким образом уязвимости образцов военной техники. В целом и «Терра», и «Омега» привели к существенному прогрессу в физике и технике мощных лазеров и послужили толчком для создания принципиально новых технологий не только в военных, но и в мирных областях.

На суше и на море

Тем временем в Крыму работали над созданием мощного лазера морского базирования. Десантный корабль проекта 770 СДК-20 был переоборудован в опытное судно ОС-90 «Форос» (проект 10030), на котором был установлен экспериментальный лазерный комплекс «Аквилон». Основная задача комплекса заключалась в засветке и поражении оптико-электронных средств наведения противника и в поражении низколетящих целей. На испытаниях в 1984 году «Аквилон» поразил ракету-мишень, но в целом эффективность комплекса оказалась небольшой из-за низкого КПД лазера и высокого коэффициента поглощения излучения во влажной атмосфере над морем. Под еще один боевой лазерный комплекс, «Айдар», переоборудовали сухогруз «Диксон». На борту судна были установлены три дополнительных газотурбинных двигателя, питавших газоразрядный лазер. Однако результаты первых испытаний показали, что дистанция «выстрела» ограничивается сотнями метров из-за того же самого высокого коэффициента поглощения во влажном воздухе. Так что с идеей установки «лазерных пушек» на боевых кораблях пришлось распрощаться.

Из космоса на землю

Разработки лазерного оружия велись не только в Советском Союзе. Широко разрекламированная Рейганом программа стратегической оборонной инициативы (СОИ) предусматривала создание орбитальной группировки спутников, вооруженных высокоэнергетическими лазерами. Они должны были поражать лазерным пучком межконтинентальные баллистические ракеты (МБР) на ранних стадиях полета, сразу же после их выхода из атмосферы. Позднее стало ясно, что программа СОИ — это блеф, но и реальные работы в области лазерного оружия тоже велись. Сначала основные надежды возлагались на химические лазеры, такие как MIRACL, который использовал в качестве источника питания химическую реакцию сгорания этилена в три­фто­риде азота. Он показал неплохие результаты на испытаниях и мог генерировать излучение мегаваттной мощности на протяжении нескольких десятков секунд. Позднее по тому же принципу был создан более компактный лазер MTHEL (Mobile Tactical High-Energy Laser). На его основе компанией TRW (позднее вошедшей в состав Northrop Grumman) и несколькими израильскими компаниями была создана система ПВО Nautilus, показавшая на полигоне White Sands в штате Нью-Мексико способность сбивать в полете реактивные и обычные снаряды.

И на море

В основе системы ZEUS используется 10-кВт твердотельный лазер на неодимовом стекле. Мощность его излучения достаточна, чтобы разогревать и прожигать тонкий металл на расстоянии до 300 м, поэтому сейчас существуют мобильные системы на базе армейского Humvee для подрыва мин, самодельных взрывных устройств и неразорвавшихся боеприпасов.

На основе твердотельного лазера конструируется и система LaWS (Laser Weapon System), создаваемая по заказу американских ВМС. Мощность таких лазеров составляет десятки киловатт, в первую очередь они предназначены для поражения небольших беспилотных аппаратов, крылатых ракет и даже легких лодок. Сбивать малогабаритный БПЛА пулеметной очередью сложно, а тратить на него ракету — расточительно, потому лазер представляется наиболее предпочтительным оружием: «выстрел» обходится менее чем в один доллар. В ряде испытаний было сбито несколько легких беспилотников, позднее система была модифицирована, мощность лазера увеличена до 30 кВт. Испытания начались в сентябре 2014 года и были рассчитаны на год, но завершились уже в декабре с отличными результатами.

Железный луч

Немалых успехов добились в разработке лазерного оружия и в Израиле. Корпорация Rafael Defence Systems представила систему Sky Shield («Небесный щит»), которая подавляет работу головок самонаведения ракет «земля-воздух», снижая риск поражения пассажирских авиалайнеров террористами. А в январе 2014 года Rafael Defence Systems объявила о создании боевого лазерного комплекса ПРО малого радиуса действия Iron Beam («Железный луч») для уничтожения ракет, минометных и артиллерийских снарядов. В состав «Железного луча» входят две твердотельные лазерные установки, способные поражать ракеты на дальности до 2 км, радиолокационная станция и пост управления. Комплекс сделан мобильным — лазерные установки смонтированы внутри стандартных контейнеров, размещенных на грузовых шасси. Мощность таких лазеров исчисляется, по словам представителей компании, десятками киловатт, но в перспективе может быть увеличена и до сотен.

Как устроена боевая лазерная система LaWS


Лазер в воздухе



Попытки создать лазерное оружие не ограничивались только наземными или корабельными системами. В США еще в 1970-х годах начались эксперименты с газодинамическими лазерами мощностью около 60 кВт, установленными на борту летающей лаборатории NKC-135A. Основ­ной задачей была разработка оружия, способного поражать крылатые ракеты. После многократных модификаций мощность излучения увеличили в несколько раз, но успехи оказались весьма скромными: комплекс сбил несколько ракет «воздух-воздух» и беспилотную мишень, а при такой мощности лазера о перехвате МБР не могло быть и речи. С 2002 года функционирует летающая лаборатория YAL-1A на базе Boeing 747−400F — на ее борту установлен химический лазер мегаваттного класса, предназначенный для поражения МБР на начальных этапах полета.

Выжигатели



Поражающее лазерное оружие до сих пор остается экспериментальным. Между тем, в некоторых областях лазерные системы весьма эффективны. В 1982 году на вооружение был принят комплекс 1К11 «Стилет», разработанный НПО «Астрофизика». Его задачей было выведение из строя оптико-электронных систем наведения оружия танков и самоходных артиллерийских установок. После обнаружения цели с помощью РЛС «Стилет» производил лазерное сканирование, выявляя оптику (по эффекту обратного блика). Затем мощные лазерные импульсы ослепляли или выжигали чувствительные элементы (датчики, светочувствительные матрицы или даже сетчатку глаза). Позднее «Астрофизика» разработала более совершенные и мощные лазерные комплексы «Сангвин» (1983) и 1К17 «Сжатие» (1992).



Лазерными системами воздушного базирования занимались и в СССР — в конце 1970-х ОКБ им. Г.М. Бериева и ЦКБ «Алмаз» начали работу над летающей лабораторией А-60 на базе Ил-76МД. Самолет был оснащен двумя дополнительными турбогенераторами для питания лазерной системы. По некоторым данным, основной задачей А-60 была отработка технологий для лазерного оружия, но не воздушного, а космического базирования. Всего было изготовлено две таких лаборатории, одна из них сгорела, а вторая существует и в настоящее время.

Еще два года назад публиковалась новость об успешном испытании лазерной системы ПРО воздушного базирования. Напомню вкратце: самолет американских ВВС Boeing 747 с лазерной установкой на борту уничтожил две ракеты в течение 2 минут после запуска, находясь в десятках километров от мест пуска…

Проверка была проведена на баллистической ракете, оснащенной жидкостным ракетным двигателем и твердотопливной ракете ближнего радиуса действия. Отчасти, из-за шума с этими испытаниями Россия начала пиарить на весь мир свой истребитель пятого поколения, известный как Т-50 или ПАК ФА. А мы вот ваш новый самолет собьем если что!

Мечты о принятии лазеров на вооружение не покидают военных еще с момента появления первых таких устройств более полувека назад. Это, в общем-то, неудивительно с учетом возможности лазеров концентрировать огромную энергию в крохотной точке и доставлять ее к цели на скорости света.

В самом деле, эффектные демонстрации того, как лазерный луч прожигает металл, можно было увидеть уже вскоре. Обычно подопытными выступали бритвенные лезвия Gillette. Однако одно дело рассечь лезвие, в идеальных лабораторных условиях, с расстояния максимум нескольких метров, и совсем другое – сбить в полете самолет или ракету.

До сих пор при всем огромном потенциале лазерного оружия проблемы с энергией, перегревом, наведением и рассеянием луча в атмосфере, хрупкостью и чувствительностью всей системы остаются, в общем-то, нерешенными. При всей распространенности лазеров в промышленности, технике, телекоммуникациях и просто в быту «настоящих» боевых лазеров до сих пор не существует.

Но военные не теряют интереса к этой теме. В 1980-е в СССР и на Западе появились лазерные системы, позволяющие слепить снайперов, летчиков и другой персонал противника. В 1990-х в США появился специально модифицированный под лазерную установку испытательный Boeing 747 (Boeing YAL-1). С 2000-х лазерный луч используется в Ираке и Афганистане для дистанционного подрыва бомб и мин. Продолжаются и работы над «полноценным» боевым лазером, способным сжигать ракеты, технику и личный состав.

Один такой проект – Firestrike реализуется специалистами концерна Northrop Grumman, причем авторы его пошли совершенно другим путем, нежели в предыдущих попытках. Вместо того чтобы сконструировать огромный мощный лазер и затем понемногу решать связанные с ним проблемы, они начали с создания небольшой и надежной системы, чтобы лишь затем подумать над тем, как масштабировать ее до нужных размеров и мощности.


В основе системы лежит щелевой лазер, который отличается компактностью и надежностью: конструкция включает небольшую пластину (например, стеклянную), на поверхность которой нанесен тонкий слой редкоземельного элемента (хрома, например). К системе подается высокочастотный разряд, накачивающий рабочее тело, которое в конечном итоге разряжается монохроматичным лазерным лучом.

Последний герой линейки Firestrike – лазер Gamma размерами с небольшой холодильник и весом 227 кг, способный выдавать стабильный высококачественный луч на протяжении аж 1,5 часов. Мощность его, правда, составляет всего 13,3 КВт, но эту величину конструкторы намерены наращивать: последние тесты подтвердили способность системы вынести и большие нагрузки.


Они включали наведение луча на неподвижно закрепленную внешнюю оболочку от беспилотных самолетов-мишеней BQM-74, испытания проводились на небольших дистанциях, при условиях «симулирующих применение полномасштабного боевого лазера, действующего с расстояния в несколько миль».

В самом деле, конструкция подразумевает соединение нескольких таких базовых модулей Gamms в единую цепь, создающую общий, куда более мощный луч – вплоть до 100 КВт, что считается нижним разумным пределом для настоящего боевого лазера. Такая установка целиком будет весить уже 1,4 т и потребует мегаваттов входящей энергии. Для стационарной установке на борту корабля, на станции ПВО – или для мобильного использования на бронированной платформе – это вполне реалистичные цифры.


Условно боевые лазеры можно разделить на стационарные и мобильные. Последние разработаны в наземном и воздушном исполнении. Во всех случаях используется химический лазер. Для любителей родной русской википедии привожу дословное название: химический кислородно-йодный лазер!

Химический лазер отличается от остальных тем, что возбужденные молекулы рабочего вещества получаются в результате химических реакций. Для военных это означает, что у каждой лазерной установки есть ограниченное количество «выстрелов», по запасу химических реактивов. Более того, после каждого выстрела необходимо прочистить и охладить «реактор» и подготовить новую порцию реагентов.


Иными словами, у лазерной пушки такого типа есть своеобразные «снаряды», время существования луча, или «выстрел», время перезарядки, «износ ствола» и другие недостатки, присущие современной артиллерии. Более того, есть даже систем отвода отработанных газов. Это значит, что с лазерными пушками из научно-фантастических произведений или гиперболоидами инженеров Гариных подобная система не имеет ничего общего. По принципу действия она скорее напоминает традиционную артиллерию с необычным «снарядом» — инфракрасным тепловым лучом.

Да, луч этого лазера находится в инфракрасном диапазоне, не видимом человеческому глазу. Это значит – никаких эффектных красных линий, так эффектно смотревшихся в С&С. Вообще, процесс уничтожения ракет в реальности вышел сложнее, чем в компьютерной игре. В начале на самолет поступает информация о фиксации пуска ракеты по тепловой вспышке при старте. Далее лазерная установка наводит на разгоняющуюся цель лазерный луч малой мощности, как бы «захватывая» цель.

В дальнейшем этот слабый луч «ведет» ракету до ее уничтожения. После захвата три обычных лазера определяют скорость и курс ракеты, а так же получают данные по атмосферным помехам, которые могут повлиять на основной боевой луч. Эффект от конвективных потоков теплого воздуха на солнце видели все? Точно так же можно преломлять и рассеивать лазерный луч. Дальность выстрела планируется установить в 600 км. для ракет с жидкостным двигателем и 300 км. для твердотопливных ракет. Ошибка в расчетах или случайный атмосферный эффект на таких расстояниях могут стоить дорого.


После того, как все эти параметры определены, можно стрелять. В боевом лазере запускается химическая реакция и происходит выстрел, длящийся менее нескольких секунд. И снова никаких эффектных прожиганий и разрезаний. Уничтожение ракеты происходит следующим образом.

Инфракрасное излучение нагревает корпус ракеты. Быстрый нагрев приводит к механическому расширению отдельных элементов этого корпуса, ослаблению креплений и расшатыванию соединений. В конечном итоге ракета разрушается от…трения об воздух на высоких скоростях. Сама, без дальнейшего участия лазера. Т.е. просто ломается в полете, как при заводском браке – не докрутили винт, не подогнали панели и т.п.


Отсюда растут ноги у разной дальности выстрела для ракет с ЖРД и твердотопливных. У последних корпус всегда прочнее, что связано с их более простой и надежной конструкцией. Следовательно, для их разрушения путем ослабления механических соединений необходим более длительный, либо более интенсивный нагрев.

Длительность химическим лазером в условиях полета на самолете (да еще и в военное время) обеспечить нельзя, так что остановились на интенсивности. Из этого так же следует, что уничтожить подобным образом обычную боевую технику или разрушить здание не возможно, нагрев не столь силен на расстояниях в сотни километров, скорость цели небольшая и разрушения от трения не будет. Разве что, можно зажарить одного — двух пехотинцев, едущих на автомобиле типа Humvee.


В общем, до разрезающих всех и вся лучей смерти дело пока не дошло. Этим занимаются люди из другого проекта.

Тактический лазер с дальностью действия в 10-20 км. планируется устанавливать на самолете Lockheed AC-130 Gunship. Это тяжелый самолет…артиллерийской поддержки наземных операций. Летающая артиллерийская батарея, предназначенная для поддержки пехоты в наземных боях, уничтожения транспортных средств и бронетехники, атаки укрепленных позиций и зданий. В Call of Duty: Modern warfare есть миссия, дающая представление о роли таких самолетов. В общем, лазерная пушка здесь будет смотреться уместно.


Гораздо большего успеха добились наземные боевые лазеры. Прежде всего, это тактический высокоэнергетический лазер THEL (Tactical High Energy Laser). Это тоже химический лазер, но уже стационарный, как лазерная туррель из компьютерных игр:) Правда, применение у него противоракетное – сбивать реактивные снаряды, небольшие ракеты и артиллерийские снаряды обычных орудий. Принцип действия тот же – быстрый нагрев вызывает деформацию корпуса, что на высокой скорости приводит к отклонению от цели или уничтожению снаряда.


В 2000 году лазер THEL сумел сбить 28 снарядов, выпущенных из РСЗО Катюша и 5 обычных артиллерийских снарядов. В 2004 году были успешно сбиты все минометные мины, выпущенные по охраняемой установкой территории. Отражались как одиночные минометные выстрелы, так и залповый минометный огонь.

Все это дело разрабатывалось США совместно с Израилем. В последнем установка тестировалось в условиях, приближенных к боевым. Именно по этому в 2000 годах внимание было уделено прежде всего неуправляемым ракетным снарядам от Катюш и минометам. Это самые распространенные и дешевые способы доставки килограммов исламского радикализма на израильские блокпосты. Так же, установка тестировалась на самодельных палестинских ракетах Qassam.


В 2006 году работы по проекту были свернуты в связи с критикой израильских военных. Не смотря на то, что все тесты прошли успешно, в последствии было рекомендовано не принимать установку на вооружение по следующим причинам. Эффективность обеспечивается только против низко-технологичных боеприпасов. Современную крылатую ракету этот лазер не собьет. Артиллерийские снаряды и минометные мины террористы могут легко доработать в кустарных условиях так, чтобы их нельзя было уничтожить подобным способом.

Например…покрасить серебрянкой! Эффективность нагрева в таком случае резко падает и уничтожить ракету уже сложнее. Доработка аэродинамической формы снаряда позволит увеличить воздушные завихрения вокруг корпуса, эффективно рассеивающие тепло. Установка фальш-панелей, отваливающихся при нагреве, на манер панелей шаттлов, так же защитит от перегрева снаряд. В случае с примитивными ракетами так же можно добавить вращение в полете или резко меняющиеся траектории, что так же сделает бессмысленным применение лазера.


Грубо говоря, лазер показал свою эффективность против серийных боеприпасов образца 50-х годов. Учитывая, что боевики на месте не сидят, защиту эти установки скорее всего долго обеспечивать не смогут. Та же участь постигла мобильные установки THEL по тем же причинам. Ну а для уничтожения живой силы и бронетехники на приемлемых расстояниях химические лазеры не подходят.

Так что, не все так страшно. До гиперболоидов и обелисков Nod еще очень далеко и ближайшее время красивых красных лучей, разрезающих танки, мы не увидим…


Перечень некоторых программ по созданию боевого лазерного оружия:

Airborne Laser (ABL) — лазер: химический, на основе окисления иода. мощность: несколько мегаватт. носитель: самолет Boeing 747-400F. статус: постоянные победные реляции

ALL (Airborned Laser Laboratory) — лазер: газодинамический, на основе CO2. мощность: 400 кВт. носитель: самолет Boeing NKC-137. статус: проект прекращен в 1984 г.



MIRACL (Mid Infra-Red Advanced Chemical Laser) — лазер: газодинамический, на основе DF (фторида дейтерия). мощность: 2,2 МВт. в декабре 1997 года проведено испытание в качестве оружия против спутников. используется в гражданском проекте HELLO — High-Energy Laser Light Opportunity.

LATEX (Laser Associe a une Tourelle Experimentale) — 1986 год, попытка создать 10 МВт лазер. Франция.

MAD (Mobile Army Demonstrator) — 1981 год. лазер: газодинамический, на основе DF (фторида дейтерия). мощность: 100 кВт. армия прекратила финансирование, не дождавшись получения обещанной мощности 1,4 МВт.

UNFT (Unified Navy Field Test Program, San Juan Capistrano, California) — 1978 год. лазер: газодинамический, на основе DF (фторида дейтерия). мощность: 400 кВт. на испытаниях был сбит ПТУРС BGM-71 Tow. в 1980 был сбит в полете ВОП UH-1 Cobra.


MTU (Mobile Test Unit) — 1975 год. лазер: газодинамический, на основе CO2. мощность: 30 кВт. носитель: БТР LVTP-7. сообщалось, что на испытаниях были сбиты ПТУРС и вертолет. но результаты испытаний признаны неубедительными.

HELEX (High Energy Laser Experimental) — конец 70-х. попытка создать боевой газодинамический на основе CO2 лазер мощностью в несколько мегаватт на базе шасси танка Leopard 2. ФРГ.

В начале мая 2012 года компания Northrop Grumman провела огневые испытания нового компактного мощного модуля твердотельного лазера, предназначенного для использования в перспективных лазерных пушках. Новый модуль Gamma мощностью 13,3 кВт относится к классу slab laser: мощных твердотельных лазеров с активной средой на основе прозрачной оптической керамики.

Лазерный модуль Gamma

Модули Gamma можно соединять вместе для создания мощной лазерной пушки, вроде 105-кВт Joint High Power Solid State Laser на основе модулей FIRESTRIKE, которая была продемонстрирована в 2009 году. По словам представителей Northrop Grumman, благодаря меньшим габаритам и весу новых модулей, лазерная пушка на базе модулей Gamma будет весить всего 226 кг и иметь габариты 58x101x30 см – это размер двух микроволновых печей.

Сочетание хорошей фокусировки пучка на большом расстоянии и высокой яркости луча у цели, делает модуль Gamma высоколетальным оружием. Во время испытаний лазера время его работы доходило до 1,5 часов, при этом мощность и фокусировка пучка превысили требуемые показатели. В ходе тестов новый лазер успешно прожег обшивку мишени BQM-74, имитирующей крылатую ракету.


Так выглядит мишень BQM-74

Модуль Gamma – это не просто демонстратор, а первая попытка создать по-настоящему надежный и пригодный для суровых полевых условий твердотельный боевой лазер. Концепция использования модулей выглядит очень правильной, поскольку позволяет «собирать» лазеры различной мощности и габаритов – в зависимости от платформы.


Так выглядит обшивка BQM-74 после обстрела лазерным модулем Gamma

Так, на корабль можно установить мощную 200-кВт пушку весом в несколько тонн, а на наземную бронемашину – один модуль весом в пару сотен килограмм. Сфокусированный пучок 13,3-кВт лазера способен быстро прожигать тонкий металл, одежду и кожу человека, что делает его весьма опасным оружием. Ну а 100-кВт лазер может почти мгновенно уничтожить артиллерийский снаряд, управляемую ракету, прожечь дыру в борту лодки или убить человека.

компиляция по материалам рунета – FOX


Весьма сенсационную новость сообщил заместитель министра обороны России Юрий Борисов - он заявил, что "Вооруженные силы России получили отдельные образцы лазерного оружия".

При этом Борисов подчеркнул - это не экспериментальные, а уже "боевые" образцы лазерного оружия, которые уже приняты на вооружение российской армией.

Отметим, что успехи США в создании полноценного лазерного оружия даже международные эксперты оценивают то как "попытки повторить успехи СССР", то как "разовые разработки для престижа американской армии".

Выступая на заседании, посвященном 70-летию Российского федерального ядерного центра в Сарове, Борисов пояснил "Это не экзотика, не экспериментальные, опытные образцы - мы уже приняли на вооружение отдельные образцы лазерного оружия". Он добавил, что "оружие на новых физических принципах сегодня стало реальностью". "Сами технологии существовали и раньше, однако только сейчас они начинают применяться в вооружении",- намекнул генерал на источники технологий, имея в виду разработанные еще в СССР и модернизированные системы.

Отметим, что еще с середины 1950-х годов в СССР осуществлялись широкомасштабные работы по разработке и испытанию лазерного оружия высокой мощности - как средства непосредственного поражения целей в интересах стратегической противокосмической и противоракетной обороны. Т.к. конкретной информации очень немного, давайте попытаемся представить, что из советских разработок могло быть можернизированно и принято на вооружение...


"Подобное высокотехнологичное оружие во многом определит облик российской армии в соответствии с новой государственной программой вооружений до 2025 года",- отметил представитель минобороны России.

Напомним, что в основу "оружия на новых физических принципах" положены физические процессы и явления, которые ранее не использовались ранее в оружии обычном (холодном, огнестрельном) или в оружии массового поражения (ядерном, химическом, бактериологическом). В частности, мировые военные эксперты выделяют лазерное, радиочастотное, пучковое, кинетическое (в том числе рельсотрон) оружие.

Напомним, что еще в декабре 2014 года в СМИ появилось заявление бывшего начальника Генштаба ВС РФ, генерала армии Юрия Балуевского. Он признал, что "Российская Федерация ведёт работу по созданию систем лазерного оружия". После ситуацию прокомментировал действующий замкомандующего Войсками ВКО генерал-майор Кирилл Макаров.

"Если в „Звездных войнах" Рейгана были, действительно, страшилки, то сейчас - нет. Конечно, оно имеет потенциал как в ослеплении средств разведки, так и в поражении оружия. Я знаю, что такие разработки ведутся в США, но я хочу сказать, что мы не отстаём в этом вопросе",- намекнул он.

Еще в 2012 году в СМИ была информация, что был подписан указ об образовании Фонда перспективных исследований (ФПИ). Целью этой организации является содействие различным научным работам оборонного назначения, которые требуют серьезной государственной поддержки. Согласно некоторым источникам, в ближайшем будущем ФПИ придет на смену Военно-промышленной комиссии при правительстве и возьмет на себя ее функции. Большинство подробностей о работе новой организации пока еще не стало достоянием общественности, однако уже появились сообщения о возможных проектах, которыми она займется.

«Известия» со ссылкой на источник в оборонной промышленности сообшали, что в 2013 году будет возобновлена программа исследования и создания боевых лазеров. К научной и конструкторской работе будут привлечены концерн «Алмаз-Антей», ТАНТК им. Г.М. Бериева и компания «Химпромавтоматика». Сообщается, что министерство обороны уже выработало свою версию облика будущего лазерного оружия и передало соответствующую документацию занятым в проекте организациям. Целью будущих работ является создание полноценной боевой системы, способной уничтожать различные цели. Очевидно, все исследования будут идти под эгидой ФПИ.



"Среди прочих были реализованы программы «Терра» и «Омега». Например, Википедия сообщает, что действующий прототип лазерной системы А-60 после развала СССР "был перебазирован из Сары-Шаган на территорию России и по некоторым сведениям с 2011 года задействован в программе "Сокол-Эшелон". Энциклопедия со ссылками на достоверные источники напоминает, что "в Советском Союзе «лазерные пистолеты» использовались в космической отрасли, а "лучевые карабины" находились на складах, как минимум до 1995 года".

Также, по данным СМИ, "с 1980 по 1985 год на вспомогательном судне Черноморского флота «Диксон» проводились испытания лазерной установки МСУ, созданной по проекту «Айдар» и предназначенной для базирования в космосе и уничтожения спутников". Кроме того, еще в 1987 году на ракете-носителе «Энергия» был запущен макет космической лазерной боевой платформы Скиф-ДМ.

США, в свою очередь, как и СССР-Россия создавали свои системы лазерного оружия - среди них были и "бластеры", и ослепляющие винтовки, и стационарные установки на кораблях и самолетах для поражения танков, боеголовок и живой силы "вероятного противника".

Впрочем, по мнению экспертов и данным СМИ, Россия "была первой страной, достигшей в этой области заметных результатов". Например, западные военные эксперты, комментируя сообщения об успешных испытаниях компанией "Боинг" химического лазера на самолете, заявили "Россия начала заниматься разработками в области тактического лазерного оружия раньше США и имеет в своем арсенале опытные образцы высокоточных боевых химических лазеров".

В частности, эксперты пишут, что "первая подобная установка была испытана нами еще в 1972 году - уже тогда русская мобильная "лазерная пушка" была способна успешно поражать воздушные цели". Российские же военные добавили, что "с тех пор возможности России в данной области значительно возросли, и США приходится нас догонять".

Кстати, западные эксперы также заметили, что "еще в мае 2006 г. ряд российских СМИ сообщили о том, что отечественная программа вооружений предполагает в перспективе осуществление работ по исследованию и разработке лазерного и кинетического оружия".

И действительно, об этом напрясую заявлял даже генеральный разработчик "Тополя" и "Булавы". Процитируем: "В рограмме вооружений, которая одобрена научно-техническим советом Военно-промышленной комиссии, есть соответствующие разделы, где работы в этом направлении предполагаются".

Стоит отметить, что один из ведущих специалистов советской программы военных лазеров профессор Петр Зарубин рассказывал СМИ - к 1985 году "наши ученые точно знали, что в США не могут создать компактный боевой лазер, а энергия самого мощного из них не превышала тогда энергии взрыва малокалиберного пушечного снаряда".

"Перспективы создания боевого лазерного оружия эксперты в этой области, несмотря на противоречивые и недоказанные данные в связи с закрытостью этой темы, оценивают, как реалистичные. Реальное появление боевого лазерного оружия возможно в период 2015-2020 годы",- писали западные военные аналитики.

Перечислим конкретные советские образцы лазерного оружия.


«Стилет» был призван вывести из строя оптико-электронные системы наведения оружия противника. Его потенциальные цели - танки, самоходные артиллерийские установки и даже низколетящие вертолеты. Обнаружив цель средствами радиолокации, «Стилет» производил ее лазерное зондирование, пытаясь обнаружить оптическое оборудование по бликующим линзам. Точно локализовав «электронный глаз», аппарат поражал его мощным лазерным импульсом, ослепляя или выжигая чувствительный элемент (фотоэлемент, светочувствительную матрицу или даже сетчатку глаза прицелившегося бойца).


СЛК 1К17 «Сжатие» был сдан на вооружение в 1992 году и был намного совершеннее «Стилета». Первое отличие, которое бросается в глаза - применение многоканального лазера. Каждый из 12 оптических каналов (верхний и нижний ряд линз) имел индивидуальную систему наведения. Многоканальная схема позволяла сделать лазерную установку многодиапазонной. В качестве противодействия подобным системам противник мог защищать свою оптику светофильтрами, блокирующими излучение определенной частоты. Но против одновременного поражения лучами сразной длиной волны светофильтр бессилен.

Объективы в среднем ряду относятся к системам прицеливания. Маленькая и большая линзы справа - это зондирующий лазер и приемный канал автоматической системы наведения. Такая же пара линз слева - это оптические прицелы: маленький дневной и большой ночной. Ночной прицел оснащался двумя лазерными подсветчиками-дальномерами. В походном положении и оптика систем наведения, и излучатели закрывались бронированными щитками.


Военный аппарат, которым НПО «Астрофизика» действительно может гордиться, лазерный комплекс дистанционной химической разведки КДХР-1Н «Даль», был сдан на вооружение в 1988 году.



Были еще и такие разработки:

Телескоп ТГ-1 лазерного локатора ЛЭ-1, полигон Сары-Шаган (Зарубин П.В., Польских С.В. Из истории создания высокоэнергетических лазеров и лазерных систем в СССР. Презентация. 2011 г.).

Работы по программе «Терра-3» развивались в двух основных направлениях: лазерная локация (включая проблему селекции целей) и лазерное поражение ГЧ баллистических ракет. Работам по программе предшествовали следующие достижения: в 1961 г. возникла собственно идея создания фотодиссоционных лазеров (Раутиан и Собельман, ФИАН) и в 1962 г. начаты исследования лазерной локации в ОКБ «Вымпел» совместно с ФИАН, а так же предложено использовать излучение фронта ударной волны для оптической накачки лазера (Крохин, ФИАН, 1962 г.). В 1963 г. в ОКБ «Вымпел» начаты проработки проекта лазерного локатора ЛЭ-1.

В ФИАН было исследовано новое явление в области нелинейной оптики лазеров — обращение волнового фронта излучения. Это крупное открытие позволило в дальнейшем совершенно по новому и весьма успешно подойти к решению ряда проблем физики и техники мощных лазеров, прежде всего проблем формирования предельно узкого пучка и его сверхточного наведения на цель. Впервые именно в программе «Терра-3» специалистами ВНИИЭФ и ФИАН было предложено использовать обращение волнового фронта для наведения и доставки энергии на мишень.


Экспериментальный боевой лазерный комплекс воздушного базирования получил обозначение А-60 и в качестве базы для него использовался транспортный самолет Ил-76МД, (на сегодняшний день конечно уже устаревший тип ВС) переоборудование которых осуществлялось в Таганроге. Заместителем главного конструктора на ТМЗ по комплексу А-60 был В.Д. Заремба, ведущим конструктором по самолету был Ю.А.Бондарев. Разработчиком лазерного комплекса выступали ЦКБ "Алмаз" (ныне в составе Концерна ПВО "Алмаз-Антей") и КБ химической автоматики. Лазер, предположительно, газодинамический углеродный на жидких элементах, мегаваттного класса мощности.

Базовым самолетом для создания летающей лаборатории стал самолет Ил-76МД (СССР-86879), на котором были проведены глубокие доработки В носовой части вместо штатного метеорадара установлен бульбообразный обтекатель со "специальной аппаратурой" (предположительно, РЛС дальнего обнаружения и наведения и лазерная система наведения) По бокам фюзеляжа под обтекателями были установлены два турбогенератора АИ-24ВТ мощностью 2,1 МВт, обеспечивающие работу лазерного комплекса (пушки). Сама лазерная установка была выполнена с убирающейся оптической головкой в отсеке с раздвижными створками, размещенными в верхней части фюзеляжа за центропланом.

Первый раз лазер был продемонстрирован широкой общественности в 1960 году, и практически сразу же журналисты назвали его «лучом смерти». С тех пор работы по созданию лазерного оружия не прекращаются ни на минуту: тридцать лет работой над ним занимались ученые СССР и США. Даже после окончания Холодной войны американцы не закрыли свои проекты в этом направлении, хотя на них были потрачены гигантские суммы. И ладно, если бы миллиардные затраты принесли результат, однако и сегодня лазерное оружие остается, скорее, непонятной диковинкой, чем эффективным боевым средством.

Определенные сдвиги в направлении практического применения лазеров, конечно же, есть, но если сравнивать их с потраченными ресурсами, можно сказать, что КПД этих исследований ничтожно мал. Периодически в СМИ появляются сообщения об испытаниях новой лазерной установки, но до широкого использования лазеров пока далеко. При этом многие эксперты считают, что «доведение до ума» лазерных технологий вызовет настоящую революцию в военном деле. Вряд ли после этого пехотинцы получат на вооружение лазерные мечи или бластеры, но это будет настоящий прорыв в противоракетной обороне. Не стоит ожидать и появления пушек-лазеров, новое оружие такого типа также появится еще нескоро.


Однако разработки лазерного оружия продолжаются. Активнее всего они ведутся в США, американцы, без сомнения, сегодня являются лидерами в этом направлении. Бьются над разработкой «лучей смерти» ученые и в нашей стране, лазерное оружие России создается на основе наработок, сделанных еще в советский период. Лазерами интересует Китай, Израиль и Индия. Участвуют в этой гонке Германия, Великобритания и Япония.

Однако прежде чем говорить о преимуществах и недостатках лазерного оружия, следует разораться в сути вопроса и понять, на каких физических принципах работают лазеры.

Что такое «луч смерти»

Лазерное оружие – это вид наступательного вооружения, которое в качестве поражающего элемента использует лазерный луч. Сегодня слово «лазер» прочно вошло в обиход, но мало кто знает, что на самом деле это аббревиатура, начальные буквы от словосочетания Light Amplification by Stimulated Emission Radiation («усиление света в результате вынужденного излучения»). Ученые называют лазер оптическим квантовым генератором, который способен преобразовывать различные виды энергии (электрическую, световую, химическую, тепловую) в узконаправленный пучок когерентного, монохроматического излучения.

В числе первых, кто занимался теоретическими обоснованием работы лазеров, был величайший физик XX столетия Альберт Эйнштейн. Экспериментальное подтверждение возможности получения лазерного излучения были получены в конце 20-х годов.

Лазер состоит из активной (или рабочей) среды, в качестве которой может выступать газ, твердое тело или жидкость, мощного источника энергии и резонатора, обычно представляющего собой систему зеркал.


С момента своего изобретения лазеры нашли применение в самых разных сферах науки и техники. Жизнь современного человека буквально наполнена лазерами, хотя он не всегда и догадывается об этом. Указки и системы считывания штрих-кодов в магазинах, проигрыватели компакт-дисков и приборы определения точного расстояния, голография – все это мы имеем только благодаря этому удивительному устройству под названием лазер. Кроме того, лазеры активно используются в промышленности (для резки, пайки, гравировки), медицине (хирургия, косметология), навигации, в метрологии и при создании сверхточной измерительной техники.

Используется лазер и в военном деле. Однако в основном его применение сводится к различным системам локации, наведения оружия и навигации, а также к лазерной связи. Были попытки (в СССР и США) создать ослепляющее лазерное оружие, которое бы выводило из строя вражескую оптику и системы прицеливания. Но настоящих «лучей смерти» военные до сих пор так и не получили. Слишком уж сложной технически оказалась задача создать лазер такой мощности, который бы мог сбивать вражеские летательные аппараты и прожигать танки. Только сейчас технологический прогресс достиг того уровня, на котором лазерные системы вооружения становятся реальностью.

Преимущества и недостатки


Несмотря на все сложности, связанные с разработкой лазерного оружия, работы в этом направлении продолжаются весьма активно, ежегодно на них тратятся миллиарды долларов. В чем же преимущества боевых лазеров, по сравнению с традиционными системами вооружения? Вот основные из них:

  • Высокая скорость и точность поражения. Луч движется со скоростью света и достигает цели практически мгновенно. Ее уничтожение происходит за считаные секунды, для переноса огня на другую цель необходим минимум времени. Излучение поражает именно ту область, на которую было направлено, не влияя на окружающие предметы.
  • Лазерный луч способен перехватывать маневрирующие цели, что выгодно отличает его от противоракет и зенитных ракет. Его скорость такова, что отклониться от него практически невозможно.
  • Лазер можно использовать не только для уничтожения, но и для ослепления цели, а также ее обнаружения. С помощью регулировки мощности можно воздействовать на цель в весьма широких пределах: от использования для предупреждения до нанесения ей критических повреждений.
  • Луч лазера не имеет массы, поэтому при выстреле не нужно вносить баллистические поправки, учитывать направление и силу ветра.
  • Нет отдачи.
  • Выстрел из лазерной установки не сопровождается такими демаскирующими факторами, как дым, огонь или сильный звук.
  • Боекомплект лазера определяется только мощностью источника энергии. Пока лазер подключен к нему, его «патроны» никогда не кончатся. Очень низкая стоимость одного выстрела.

Однако есть у лазеров и серьезные недостатки, которые и являются причиной того, что пока (на 2017 год) они не стоят на вооружении ни у одной из армий мира:

  • Рассеивание. Из-за рефракции лазерный луч расширяется в атмосфере и теряет свою фокусировку. На расстоянии в 250 км пятно лазерного луча имеет диаметр 0,3-0,5 м, что, соответственно, резко уменьшает его температуру, делая лазер неопасным для цели. Еще хуже воздействуют на луч дым, дождь или туман. Именно по этой причине создание дальнобойных лазеров пока невозможно.
  • Невозможность вести загоризонтный обстрел. Луч лазера – это идеально прямая линия, им можно стрелять только по видимой цели.
  • Испарение металла цели затеняет ее и делает лазер менее эффективным.
  • Высокий уровень энергопотребления. Как уже было сказано выше, КПД лазерных систем мал, поэтому для создания оружия, способного поразить цель, нужно очень много энергии. Этот недостаток можно назвать ключевым. Только в последние годы появилась возможность создания лазерных установок более-менее приемлемого размера и мощности.
  • От лазера легко защититься. С лазерным лучом довольно просто справиться с помощью зеркальной поверхности. Любое зеркало отражает его, независимо от уровня мощности.


Боевые лазеры: история и перспективы

Работы над созданием боевых лазеров в СССР проводились с начала 60-х годов. Больше всего военных интересовало применение лазеров в качестве эффективного средства противоракетной и противовоздушной обороны. Наиболее известными советскими проектами в этой области были программы «Терра» и «Омега». Испытания советских боевых лазеров проводились на полигоне Сары-Шаган в Казахстане. Проектами руководили академики Басов и Прохоров – лауреаты Нобелевской премии за работы в области изучения лазерного излучения.

После распада СССР работы на полигоне Сары-Шаган были прекращены.

Интересный случай произошел в 1984 году. Лазерным локатором – он являлся составной частью «Терры» - был облучен американский шаттл «Челенджер», что привело к нарушениям в работе связи и сбоям другого оборудования корабля. Члены экипажа почувствовали внезапное недомогание. Американцы быстро поняли, что причиной проблем на борту челнока является какое-то электромагнитное воздействие с территории Советского Союза и выразили протест. Данный факт можно назвать единственным практическим применением лазера на протяжении Холодной войны.

Вообще следует отметить, что локатор установки действовал очень успешно, чего нельзя сказать о боевом лазере, который должен был сбивать вражеские боеголовки. Проблема была в недостатке мощности. Решить эту проблему так и не смогли. Ничего не вышло и с другой программой – «Омега». В 1982 году установка смогла сбить радиоуправляемую мишень, но в целом по эффективности и стоимости она значительно проигрывала обычным зенитным ракетам.


В СССР разрабатывалось ручное лазерное оружие для космонавтов, лазерные пистолеты и карабины лежали на складах до середины 90-х годов. Но на практике это несмертельное оружие так и не применялось.

С новой силой разработки советского лазерного оружия начались после объявления американцами о развертывании программы «Стратегической оборонной инициативы» (СОИ). Ее целью было создания эшелонированной системы противоракетной обороны, которая бы смогла уничтожать советские ядерные боеголовки на различных этапах их полета. Одним из основных инструментов поражения баллистических ракет и ядерных блоков должны были стать лазеры, размещенные на околоземной орбите.


Советский Союз был просто обязан ответить на этот вызов. 15 мая 1987 года состоялся первый старт сверхтяжелой ракеты «Энергия», которая должна была вывести на орбиту боевую лазерную станцию «Скиф», предназначенную для уничтожения американских спутников наведения, входящих в систему ПРО. Сбивать их предполагалось газодинамическим лазером. Однако сразу после отделения от «Энергии» «Скиф» потерял ориентацию и упал в Тихом океане.


Были в СССР и другие программы по разработке боевых лазерных систем. Одна из них – это самоходный комплекс «Сжатие», работы над которым велись в НПО «Астрофизика». Его задачей было не прожигание брони танков неприятеля, а выведение из строя оптико-электронных систем вражеской техники. В 1983 года на базе самоходной установки «Шилка» был разработан еще один лазерный комплекс – «Сангвин», который предназначался для уничтожения оптических систем вертолетов. Следует отметить, что СССР как минимум не уступал США в «лазерной» гонке.


Из американских проектов наиболее известным является лазер YAL-1А, размещенный на самолете Boeing-747-400F. Реализацией этой программы занималась компания Boeing. Основной задачей этой системы является уничтожение баллистических ракет противника на участке их активной траектории. Лазер был успешно испытан, но его практическое применение находится под большим вопросом. Дело в том, что максимальная дальность «стрельбы» YAL-1А составляет всего 200 км (по другим источникам – 250). Boeing-747 просто не сможет подлететь на такое расстояние, если противник располагает хотя бы минимальной системой ПВО.


Следует отметить, что лазерное оружие США создается сразу несколькими крупными компаниями, каждая из которых уже имеет, чем похвастать.

В 2013 году американцы испытали лазерную систему HEL MD мощностью 10 кВт. С ее помощью удалось сбить несколько минометных мин и беспилотник. В 2017 году планируется провести испытания установки HEL MD с мощностью в 50 киловатт, а к 2020 году должна появиться 100-киловаттная установка.


Еще одной страной, которая занимается активной разработкой противоракетных лазеров, является Израиль. Ракеты типа «Кассам», которые используют палестинские террористы, - это многолетняя головная боль этой страны. Сбивать их с помощью противоракет очень дорого, поэтому лазер выглядит как очень неплохая альтернатива. Разработка лазерной системы ПРО Nautilus началась в конце 90-х годов, над ней совместно работали американская компания Northrop Grumman и израильские специалисты. Однако эта система так и не была принята на вооружение, Израиль вышел из этой программы. Американцы использовали накопленный опыт для создания более совершенной лазерной ПРО Skyguard, испытания которой начались в 2008 году.


Основу обеих систем – Nautilus и Skyguard – составлял химический лазер THEL мощностью 1 мВт. Американцы называют Skyguard прорывом в области лазерного оружия.

Большую заинтересованность в лазерном оружии проявляют военно-морские силы США. По замыслу американских адмиралов, лазеры могут быть использованы в качестве эффективного элемента корабельных систем ПРО и ПВО. К тому же мощность силовых установок боевых судов вполне позволяет сделать «лучи смерти» по-настоящему смертоносными. Из последних американских разработок следует упомянуть о лазерной установке MLD, разработанной компанией Northrop Grumman.

В 2011 году началась разработка новой оборонительной системы TLS, в состав которой, кроме лазера, должна входить еще и скорострельная пушка. Проектом занимаются компании Boeing и ВАЕ Systems. По замыслу разработчиков, эта система должна поражать крылатые ракеты, вертолеты, самолеты и надводные цели на дистанциях до 5 км.

Сейчас разработкой новых систем лазерного вооружения занимаются в Европе (Германия, Великобритания), в Китае, РФ.


В настоящее время вероятность создания дальнобойного лазера для уничтожения стратегических ракет (боеголовок) или боевых летательных аппаратов на дальних расстояниях выглядит минимальной. Совсем другое дело тактический уровень.

В 2012 году компания Lockheed Martin представила широкой общественности довольно компактный комплекс ПВО ADAM, который производит уничтожение целей с помощью луча лазера. Он способен уничтожать цели (снаряды, ракеты, мины, БПЛА) на дистанциях до 5 км. В 2015 году руководство этой компании заявило о создании нового поколения тактических лазеров мощностью от 60 кВт.

Немецкая оружейная компания Rheinmetall обещает выйти на рынок с новым тактическим высокомощным лазером High Energy Laser (HEL) в 2017 году. Он также будет установлен на транспортном средстве. Ранее заявлялось, что в качестве базы для боевого лазера рассматриваются колесный автомобиль, колесный БТР и гусеничный БТР M113.

В 2015 году в США было объявлено о создании тактического боевого лазера GBAD OTM, основной задачей которого является защита от разведывательных и ударным БПЛА противника. В настоящее время этот комплекс проходит испытания.

В 2014 году на оружейной выставке в Сингапуре была проведена презентация израильского боевого лазерного комплекса Iron Beam. Он предназначен для поражения снарядов, ракет и мин на малых дистанциях (до 2 км). В состав комплекса входит две твердотельные лазерные установки, РЛС и пульт управления.


Разработки лазерного оружия ведутся и в России, но большая часть информации об этих работах засекречена. В прошлом году заместитель министра обороны РФ Бирюков заявил о принятии на вооружение лазерных комплексов. По его словам, они могут быть установлены на наземные машины, боевые самолеты и корабли. Однако какое именно оружие имел в виду генерал не совсем понятно. Известно, что в настоящее время продолжаются испытания лазерного комплекса воздушного базирования, который будет устанавливаться на транспортный самолет Ил-76. Подобными разработками занимались еще в СССР, такая лазерная система может быть использована для выведения из строя электронной «начинки» спутников и самолетов.

С большой долей уверенности можно сказать, что в ближайшие годы тактическое лазерное оружие будет принято на вооружение. Эксперты считают, что лазеры начнут массово поступать в войска уже в начале следующего десятилетия. Компания Lockheed Martin уже заявила о своих планах установить лазерные пушки на новейший истребитель F-35. ВМФ США уже неоднократно заявлял о необходимости размещения лазерного оружия на авианосце Gerald R. Ford и эсминцах класса Zumwalt.