Удельные сопротивления кабельных линий козлов. Схемы замещения лэп

Обусловливает нагрев проводов (тепловые потери) и зависит от мате­риала токоведущих проводников и их сечения. Для линий с проводами не­большого сечения, выполненных цветным металлом (алюминий, медь), ак­тивное сопротивление принимают равным омическому (сопротивлению по­стоянного тока), поскольку проявление поверхностного эффекта при про­мышленных частотах 50-60 Гц незаметно (около 1 %). Для проводов боль­шого сечения (500 мм и более) явление поверхностного эффекта при про­мышленных частотах значительное

Активное погонное сопротивление линии определяется по формуле, Ом/км

где - удельное активное сопротивление материала провода, Ом мм /км; F - сечение фазного провода (жилы), . Для технического алюминия в за­висимости от его марки можно принять = 29,5-31,5 Ом мм /км, для меди = 18,0-19,0 Ом мм 2 /км.

Активное сопротивление не остаётся постоянным. Оно зависит от тем­пературы провода, которая определяется температурой окружающего возду­ха (среды), скоростью ветра и значением проходящего по проводу тока.

Омическое сопротивление упрощённо можно трактовать как препятст­вие направленному движению зарядов узлов кристаллической решётки мате­риала проводника, совершающих колебательные движения около равновесного состояния. Интенсивность колебаний и соответственно омическое со­противление возрастают с ростом температуры проводника.

Зависимость активного сопротивления от температуры провода t опре­деляется в виде


где- нормативное значение сопротивления R 0 , рассчитывается по формуле (4.2) , при температуре проводника t= 20°С; а - температурный коэф­фициент электрического сопротивления, Ом/град (для медных, алюминиевых и сталеалюминиевых проводов α = 0,00403, для стальных α = 0,00405).

Трудность уточнения активного сопротивления линий по (4.3) заклю­чается в том, что температура провода, зависящая от токовой нагрузки и ин­тенсивности охлаждения, может заметно превышать температуру окружаю­щей среды. Необходимость такого уточнения может возникнуть при расчёте сезонных электрических режимов.

При расщеплении фазы ВЛ на n одинаковых проводов в выражении (4.2) необходимо учитывать суммарное сечение проводов фазы:

4.2. Индуктивное сопротивление

Обусловлено магнитным полем, возникающим вокруг и внутри про­водника при протекании по нему переменного тока. В проводнике наводится ЭДС самоиндукции, направленная в соответствии с принципом Ленца проти­воположно ЭДС источника


Противодействие, которое оказывает ЭДС самоиндукции изменению ЭДС источника, и обусловливает индуктивное сопротивление проводника. Чем больше изменение потокосцепления,, определяемое частотой то­ка = 2nf (скоростью изменения тока di /dt ), и величина индуктивности фазы L, зависящая от конструкции (разветвлённости) фазы, и трёхфазной ЛЭП в целом, тем больше индуктивное сопротивление элемента X =L. То есть для одной и той же линии (или просто электрической катушки) с ростом час­тоты питающего тока f индуктивное сопротивление увеличивается. Естественно, что при нулевой частоте =2nf=0, например в сетях постоянного тока, индуктивное сопротивление ЛЭП отсутствует.

На индуктивное сопротивление фаз многофазных ЛЭП оказывает влияние также взаимное расположение фазных проводов (жил). Кроме ЭДС самоиндукции, в каждой фазе наводится противодействующая ей ЭДС взаи­моиндукции. Поэтому при симметричном расположении фаз, например по вершинам равностороннего треугольника, результирующая противодейст­вующая ЭДС во всех фазах одинаковая, а следовательно, одинаковы пропор­циональные ей индуктивные сопротивления фаз. При горизонтальном распо­ложении фазных проводов потокосцепление фаз неодинаковое, поэтому ин­дуктивные сопротивления фазных проводов отличаются друг от друга. Для достижения симметрии (одинаковости) параметров фаз на специальных опо­рах выполняют транспозицию (перестановку) фазных проводов.

Индуктивное сопротивление, отнесённое к 1 км линии, определяется по эмпирической формуле, Ом/км,


Если принять частоту тока 50 Гц, то при указанной частоте = 2nf = 314 рад/с для проводов из цветных металлов (|m = 1) получим, Ом/км,


Однако для ВЛ указанных номинальных напряжений характерны соот­ношения между параметрами R 0 <n проводах в фазе увеличивается эквивалентный радиус расщепле­ния конструкции фазы (рис. 4.4):

(4.23)

где а - расстояние между проводами в фазе, равное 40-60 см.


Анализ зависимости (4.23) показывает, что эквивалентный показывает, что эквивалентный радиус фазы изменяется в диапазоне от 9,3см (при n = 2) до 65 см (при n = 10) и малозависит от сечения провода. Основным фактором, определяющим изменение , является количество проводов в фазе. Так как эквивалентный радиус расщеплённой фазы намного больше действительного радиуса провода нерасщеплённой фазы , то индуктивно


сопротивление такой ВЛ, определяемое по преобразованной формуле вида (4.24), Ом/км, уменьшается:

(4.24)


Снижение Х 0 , достигаемое в основном за счёт уменьшения внешнего сопротивления X " 0 , относительно невелико. Например, при расщеплении фа­зы воздушной линии 500 кВ на три провода - до 0,29-0,30 Ом/км, т. е. при­мерно на треть. Соответственно с уменьшением сопротивления

Увеличивается пропускная способность (идеальный предел) линии:

(4.25)

Естественно, что с увеличением эквивалентного радиуса фазы снижается напряжённость электрического поля вокруг фазы и, следователь­но, потери мощности на коронирование. Тем не менее суммарные значения этих потерь для ВЛ высокого и сверхвысокого напряжения (220 кВ и более) составляют заметные величины, учёт которых необходим при анализе режи­мов линий указанных классов напряжений (рис. 4.5 ).

Расщепление фазы на несколько проводов увеличивает ёмкость ВЛ и соответственно емкостную проводимость:

(4.26)


Например, при расщеплении фазы ВЛ 220 кВ на два провода проводи­мость возрастает с 2,7 10 -6 до 3,5 10 -6 См/км. Тогда зарядная мощность ВЛ 220 кВ средней протяжённости, например 200 км, составляет


что соизмеримо с передаваемыми мощностями по ВЛ данного класса напря­жения, в частности с натуральной мощностью линии

(4.27)


4.6. Схемы замещения линий электропередач

Выше приведена характеристика отдельных элементов схем замещения линий. В соответствии с их физическим проявлением при моделировании электрических сетей используют схемы ВЛ, КЛ и шинопроводов, представленные на рис. 4.5 , рис. 4.6 , рис. 4.7 . Приведём некоторые обобщающие пояснения к этим схемам.

При расчёте симметричных установившихся режимов ЭС схему заме­щения составляют для одной фазы, т. е. продольные её параметры, сопротив­ления Z=R+JX изображают и вычисляют для одного фазного провода (жилы), а при расщеплении фазы - с учётом количества проводов в фазе и эквивалентного радиуса фазной конструкции ВЛ.

Ёмкостная проводимость Вс, учитывает проводимости (ёмкости) между фазами, между фазами и землёй и отражает генерацию зарядной мощности всей трёхфазной конструкции линии:

Активная проводимость линии G, изображаемая в виде шунта между фазой (жилой) и точкой нулевого потенциала схемы (землёй), включает сум­марные потери активной мощности на корону (или в изоляции) трёх фаз:


Поперечные проводимости (шунты) Y=G+jX в схемах замещения можно не изображать, а заменять мощностями этих шунтов (рис. 4.5, б ; рис. 4.6, б). Например, вместо активной проводимости показывают потери активной мощности в ВЛ:

(4.29)


или в изоляции КЛ:


Взамен ёмкостной проводимости указывают генерацию зарядной мощ­ности

(4.30а)


Указанный учёт поперечных ветвей ЛЭП нагрузками упрощает оценку электрических режимов, выполняемых вручную. Такие схемы замещения ли­ний именуют расчётными (рис. 4.5, б ; рис. 4.6, б ).

В ЛЭП напряжением до 220 кВ при определённых условиях можно не учитывать те или иные параметры, если их влияние на работу сети несущест­венно. В связи с этим схемы замещения линий, показанные на рис. 4.1 , в ряде случаев могут быть упрощены.

В ВЛ напряжением до 220 кВ потери мощности на корону, а в КЛ на­пряжением до 35 кВ диэлектрические потери незначительные. Поэтому в расчетах электрических режимов ими пренебрегают и соответственно при­нимают равной нулю активную проводимость (рис. 4.6 ). Учёт активной про­водимости необходим для ВЛ напряжением 220 кВ и для КЛ напряжением 110 кВ и выше в расчётах, требующих вычисления потерь электроэнергии, а для ВЛ напряжением 330 кВ и выше также при расчёте электрических режи­мов (рис. 4.5 ).

Необходимость учёта ёмкости и зарядной мощности линии зависит от соизмеряемости зарядной и нагрузочной мощности. В местных сетях не­большой протяжённости при номинальных напряжениях до 35 кВ зарядные токи и мощности значительно меньше нагрузочных. Поэтому в КЛ ёмкост­ную проводимость учитывают только при напряжениях 20 и 35 кВ, а в ВЛ ею можно пренебречь.

В районных сетях (110 кВ и выше) со значительными протяжённостями (40-50 км и больше) зарядные мощности могут оказаться соизмеримыми с нагрузочными и подлежат обязательному учёту либо непосредственно (рис. 4.6, б ) либо введением ёмкостных проводимостей (рис. 4.6, а ).


В проводах ВЛ при малых сечениях (16-35 мм 2) преобладают активные сопротивления, а при больших сечениях (240 мм 2 в районных сетях напряже­нием 220 кВ и выше) свойства сетей определяются их индуктивностями. Активные и индуктивные сопротивления проводов средних сечений (50-185 мм 2) близки друг к другу. В КЛ напряжением до 10 кВ небольших сече­ний (50 мм 2 и менее) определяющим является активное сопротивление, и в таком случае индуктивные сопротивления могут не учитываться (рис. 4.7, б ).

Необходимость учёта индуктивных сопротивлений зависит также от доли реактивной составляющей тока в общей электрической нагрузке. При анализе электрических режимов с низкими коэффициентами мощности (cos<0,8) индуктивные сопротивления КЛ необходимо учитывать. В про­тивном случае возможны ошибки, приводящие к уменьшению действитель­ной величины потери напряжения.

Схемы замещения ЛЭП постоянного тока могут рассматриваться как частный случай схем замещения ЛЭП переменного тока при Х = 0 и b = 0.

Размещено 10.01.2012 (актуально до 10.04.2013)

Линия электрической сети теоретически рассматривается состоящей из бесконечно большого количества равномерно распределенных вдоль нее активных и реактивных сопротивлений и проводимостей.


Точный учет влияния распределенных сопротивлений и проводимостей сложен и необходим при расчетах очень длинных линий, которые в этом курсе не рассматривается.


На практике ограничиваются упрощенными методами расчета, рассматривая линию с сосредоточенными активными и реактивными сопротивлениями и проводимостями.


Для проведения расчетов принимают упрощенные схемы замещения линии, а именно: П-образную схему замещения, состоящую из последовательно соединенных активного (r л) и реактивного (x л) сопротивлений. Активная (g л) и реактивная (емкостная) (b л) проводимости включены в начале и конце линии по 1/2.



П-образная схема замещения характерна для воздушных ЛЭП напряжением 110-220 кВ длиной до 300-400 км.


Активное сопротивление определяется по формуле:


r л =r о ∙l,


где r о – удельное сопротивление Ом/км при t о провода + 20 о, l – длина линии, км.


Активное сопротивление проводов и кабелей при частоте 50 Гц обычно примерно равно омическому сопротивлению. Не учитывается явление поверхностного эффекта.


Удельное активное сопротивление r о для сталеалюминиевых и других проводов из цветных металлов определяется по таблицам в зависимости от поперечного сечения.


Для стальных проводов нельзя пренебрегать поверхностным эффектом. Для них r о зависит от сечения и протекающего тока и находится по таблицам.


При температуре провода, отличной от 20 о С сопротивление линии уточняется по соответствующим формулам.


Реактивное сопротивление определяется:


x л =x о ∙l,


где x о - удельное реактивное сопротивление Ом/км.


Удельные индуктивные сопротивления фаз ВЛ в общем случае различны. При расчетах симметричных режимов используют средние значения x о:



где r пр - радиус провода, см;

Д ср - среднегеометрическое расстояние между фазами, см, определяется следующим выражением:


Д ср =(Д АВ Д АВ Д СА) 1/3


Где Д АВ, Д АВ, Д СА - расстояния между проводами соответствующих фаз А, В, С.



Например, при расположении фаз по углам равностороннего треугольника со стороной Д, среднегеометрическое расстояние равно Д.


Д АВ =Д ВС =Д СА =Д


При расположении проводов ЛЭП в горизонтальном положении:



Д АВ =Д ВС =Д


Д СА =2Д


При размещении параллельных цепей на двухцепных опорах потокосцепление каждого фазного провода определяется токами обеих цепей. Изменение Х 0 из-за влияния второй цепи зависит от расстояния между цепями. Отличие Х 0 одной цепи при учете и без учета влияния второй цепи не превышает 5-6% и не учитывается в практических расчетах.


В линиях электропередач при U ном ≥330 кВ (иногда и при напряжении 110 и 220 кВ) провод каждой фазы расщепляется на несколько проводов. Это соответствует увеличению эквивалентного радиуса. В выражении для Х 0:


X о =0,144lg(Д ср /r пр)+0,0157 (1)


вместо r пр используется


r эк =(r пр a ср пф-1) 1/пФ,


где r эк - эквивалентный радиус провода, см;

а ср - среднегеометрическое расстояние между проводами одной фазы, см;

n ф - число проводов в одной фазе.


Для линии с расщепленными проводами последнее слагаемое в формуле 1 уменьшается в n ф раз, т.е. имеет вид 0,0157/n ф.


Удельное активное сопротивление фазы линии с расщепленными проводами определяются так:


r 0 =r 0пр /n ф,


где r 0пр - удельное сопротивление провода данного сечения, определенное по справочным таблицам.


Для сталеалюминиевых проводов Х 0 определяется по справочным таблицам, в зависимости от сечения, для стальных в зависимости от сечения и тока.


Активная проводимость (g л) линии соответствует двум видам потерь активной мощности:


1) от тока утечки через изоляторы;

2) потери на корону.


Токи утечки через изоляторы (ТФ-20) малы и потерями в изоляторах можно пренебречь. В воздушных линиях (ВЛ) напряжением 110 кВ и выше при определенных условиях напряженность электрического поля на поверхности провода возрастает и становится больше критической. Воздух вокруг провода интенсивно ионизируется, образуя свечение - корону. Короне соответствуют потери активной мощности. Наиболее радикальными средствами уменьшения потерь мощности на корону является увеличение диаметра провода, для линий высокого напряжения (330 кВ и выше) использование расщепления проводов. Иногда можно использовать так называемый системный способ уменьшения потерь мощности на корону. Диспетчер уменьшает напряжение в линии до определенной величины.


В связи с этим задаются наименьшие допустимые сечения по короне:


150 кВ - 120 мм 2 ;

220 кВ - 240 мм 2 .


Коронирование проводов приводит:


К снижению КПД,

К усиленному окислению поверхности проводов,

К появлению радиопомех.


При расчете установившихся режимов сетей до 220 кВ активная проводимость практически не учитывается.


В сетях с U ном ≥330 кВ при определении потерь мощности при расчете оптимальных режимов, необходимо учитывать потери на корону.


Емкостная проводимость (в л) линии обусловлена емкостями между проводами разных фаз и емкостью провод - земля и определяется следующим образом:


в л =в 0 l,


где в 0 - удельная емкостная проводимость См/км, которая может быть определена по справочным таблицам или по следующей формуле:


в 0 =7,58∙10- 6 /lg(Д ср /r пр) (2),


где Д ср - среднегеометрическое расстояние между проводами фаз; r пр - радиус провода.


Для большинства расчетов в сетях 110-220 кВ ЛЭП (линия электропередачи) представляется более простой схемой замещения:



Иногда в схеме замещения вместо емкостной проводимости в л /2 учитывается реактивная мощность, генерируемая емкостью линий (зарядная мощность).



Половина емкостной мощности линии, МВАр, равна:


Q C =3I c U ф =3U ф в 0 l/2=0,5V 2 в л,(*),


где U ф и U – соответственно фазное и междуфазное (линейное) напряжения, кВ;

I с - емкостный ток на землю:


Ic=U ф в л /2


Из выражения для Q C (*) следует, что мощность Q C , генерируемая линий сильно зависит от напряжения. Чем выше напряжение, тем больше емкостная мощность.


Для воздушных линий напряжением 35 кВ и ниже емкостную мощность (Q C) можно не учитывать, тогда схема замещения примет следующий вид:



Для линий с U ном ≥330 кВ при длине больше 300-400 км учитывают равномерное распределение сопротивлений и проводимостей вдоль линии.


Кабельные линии электропередачи представляют такой же П-образной схемой замещения как и ВЛ.



Удельные активные и реактивные сопротивления r 0 , х 0 определяют по справочным таблицам, так же как и для ВЛ.


Из выражения для X 0 и в 0:


X о =0,144lg(Д ср /r пр)+0,0157


в 0 =7,58∙10 -6 /lg(Д ср /r пр)


видно, что X 0 уменьшается, а в 0 растет при сближении разных проводов.


Для кабельных линий расстояние между проводами фаз значительно меньше, чем для ВЛ и Х 0 очень мало.


При расчетах режимов КЛ (кабельных линий) напряжением 10кВ и ниже можно учитывать только активное сопротивление.


Емкостный ток и Q C в кабельных линиях больше чем в ВЛ. В кабельных линиях (КЛ) высокого напряжения учитывают Q C , причем удельную емкостную мощность Q C0 кВАр/км можно определить по таблицам в справочниках.


Активную проводимость (g л)учитывают для кабелей 110 кВ и выше.


Удельные параметры кабелей X 0 , а также Q C0 приведенные в справочных таблицах ориентировочны, более точно их можно определить по заводским характеристикам кабелей.

Обсудить на форуме



В большинстве случаев можно полагать, что параметры линии электропередачи (активное и реактивное сопротивления, активная и емкостная проводимости) равномерно распределены по ее длине. Для линии сравнительно небольшой длины распределенность параметров можно не учитывать и использовать сосредоточенные параметры: активное и реактивное сопротивления линии Rл и Xл, активную и емкостную проводимости линии Gл и Bл.

Воздушные линии электропередачи напряжением 110 кВ и выше длиной до 300 - 400 км обычно представляются П-образной схемой замещения (рис.3.1).

Активное сопротивление линии определяется по формуле:

Rл=roL,(3.1)где

ro - удельное сопротивление, Ом/км, при температуре провода +20°С;

L - длина линии, км.

Удельное сопротивление г0 определяется по таблицам в зависимости от поперечного сечения. При температуре провода, отличной от 200С, сопротивление линии уточняется.

Реактивное сопротивление определяется следующим образом:

Xл=xoL, (3.2)

где xo - удельное реактивное сопротивление, Ом/км.

Удельные индуктивные сопротивления фаз воздушной линии в общем случае различны. При расчетах симметричных режимов используют средние значения xo:

где rпр – радиус провода, см;

Dср – среднегеометрическое расстояние между фазами, см, определяемое следующим выражением:

где Dab, Dbc, Dca – расстояния между проводами соответственно фаз a, b, c, рис.3.2.

При размещении параллельных цепей на двухцепных опорах потокосцепление каждого фазного провода определяется токами обеих цепей. Изменение xo из-за влияния второй цепи в первую очередь зависит от расстояния между цепями. Отличие xo одной цепи при учете и без учета влияния второй цепи не превышает 5-6 % и не учитывается при практических расчетах.

В линиях электропередачи при Uном ³ ЗЗ0кВ провод каждой фазы расщепляется на несколько (N) проводов. Это соответствует увеличению эквивалентного радиуса. Эквивалентный радиус расщепленной фазы:

где a – расстояние между проводами в фазе.

Для сталеалюминиевых проводов xo определяется по справочным таблицам в зависимости от сечения и числа проводов в фазе.

Активная проводимость линии Gл соответствует двум видам потерь активной мощности: от тока утечки через изоляторы и на корону.

Токи утечки через изоляторы малы, поэтому потерями мощности в изоляторах можно пренебречь. В воздушных линиях напряжением 110кВ и выше при определенных условиях напряженность электрического поля на поверхности провода возрастает и становится больше критической. Воздух вокруг провода интенсивно ионизируется, образуя свечение - корону. Короне соответствуют потери активной мощности. Наиболее радикальным средством снижения потерь мощности на корону является увеличение диаметра провода. Наименьшие допустимые сечения проводов воздушных линий нормируются по условию образования короны: 110кВ - 70 мм2; 220кВ -240 мм2; 330кВ –2х240 мм2; 500кВ – 3х300 мм2; 750кВ – 4х400 или 5х240 мм2.

При расчете установившихся режимов электрических сетей напряжением до 220кВ активная проводимость практически не учитывается. В сетях с Uном³ЗЗ0кВ при определении потерь мощности и при расчете оптимальных режимов необходимо учитывать потери на корону:

DРк = DРк0L=U2g0L,3.6)

где DРк0 - удельные потери активной мощности на корону, g0 - удельная активная проводимость.

Емкостная проводимость линии Bл обусловлена емкостями между проводами разных фаз и емкостью провод - земля и определяется следующим образом:

где bо - удельная емкостная проводимость, См/км, которая может быть определена по справочным таблицам или по следующей формуле:

Для большинства расчетов в сетях 110-220 кВ линия электропередачи обычно представляется более простой схемой замещения (рис.3.3,б). В этой схеме вместо емкостной проводимости (рис.3.3,а) учитывается реактивная мощность, генерируемая емкостью линий. Половина емкостной (зарядной) мощности линии, Мвар, равна:

UФ и U – фазное и междуфазное напряжение, кВ;

Ib – емкостный ток на землю.

Рис. 3.3. Схемы замещения линий электропередачи:

а, б - воздушная линия 110-220-330 кВ;

в - воздушная линия Uном £35 кВ;

г -кабельная линия Uном£10 кВ

Из (3.8) следует, что мощность Qb, генерируемая линией, сильно зависит от напряжения. Для воздушных линий напряжением 35 кВ и ниже емкостную мощность можно не учитывать (рис.3.3, в). Для линий Uном ³ ЗЗ0 кВ при длине более 300-400 км учитывают равномерное распределение сопротивлений и проводимостей вдоль линии. Схема замещения таких линий – четырехполюсник.

Кабельные линии электропередачи также представляют П-образной схемой замещения. Удельные активные и реактивные сопротивления ro, xo определяют по справочным таблицам, так же как и для воздушных линий. Из (3.3), (3.7) видно, что xo уменьшается, а bo растет при сближении фазных проводников. Для кабельных линий расстояния между проводниками значительно меньше, чем для воздушных, поэтому xo мало и при расчетах режимов для кабельных сетей напряжением 10 кВ и ниже можно учитывать только активное сопротивление (рис.3.3, г). Емкостный ток и зарядная мощность Qb в кабельных линиях больше, чем в воздушных. В кабельных линиях высокого напряжения учитывают Qb (рис.3.3, б). Активную проводимость Gл учитывают для кабелей 110 кВ и выше.

3.2. Потери мощности в линиях

Потери активной мощности в ЛЭП делятся на потери холостого хода DРХХ (потери на корону) и нагрузочные потери (на нагрев проводов) DРН:

В линиях потери реактивной мощности тратятся на создание магнитного потока внутри и вокруг провода