Подсчет среднесуточной концентрации пыли в воздухе. Методы определения концентрации пыли в воздухе рабочей зоны

Цель работы

Определить запыленность воздуха производственных предприятий в условиях лаборатории.

Задачи работы

Определить условия, при которых происходит запыленность воздуха производственных помещений. Определить наиболее подходящий для данных условий метод исследований. Определить фактическое значение концентрации вредных веществ в воздухе производственных помещений (в условиях лаборатории). Определить соответствие фактической концентрации пыли, определенной экспериментальным путем нормативной, в соответствии с утвержденными государственными стандартами.

Обеспечивающие средства

Приборы и материалы для исследования - электрические аспира­-
торы, воздуходувки, пылемеры, различные пробоотборники, кониметры,
фильтры марки АФА различной модификации. Весовое определение количества пыли, находящейся в воздухе, осу­ществляют с помощью установки, состоящей из шести основных частей:

1. Аспиратора (модель 822) - побудителя движения воздуха.

2. Пылевой камеры для создания искусственных условий запыленности воздуха.

3. Приспособлений для распыления навески пыли в пылевой камере.

4. Аллонжа (фильтродержатель) и соединительного шланга.

5. Фильтров.

6. Аналитических весов.

Примечание: На кафедре имеется стационарная установка, в которой совмещены все эти агрегаты.

Задание

1. Структура исследований: подразделяют исследования в промыш­ленности и для научных целей. В промышленности исследуют запыленность воздуха в зоне дыхания работников на рабочих местах для специальной оценки условий труда или при составлении карты условий труда, а также при выбросах запыленного воздуха в атмосферу, по единой методике. В научных целях исследования запылённости воздуха осуществляют в зависимости от поставленной цели по соответствующим методикам, разрабатываемым отдельно к каждому виду исследования. Методы исследований: весовой, счётный, косвенный.

2. Методы исследования запыленности воздуха

При оценке условий труда, качества воздуха, степени его запы­ленности в зоне дыхания на рабочих местах используют три метода: весо­вой, счетный и косвенный.

Весовой метод. Он позволяет определить количество миллиграм­мов пыли в одном кубическом метре воздуха, для чего необходимо оса­дить пыль из определенного объема воздуха на фильтре и определять ее вес. В России и ряде других государств весовой метод является стан­дартным. При использовании весового метода требует­ся, по меньшей мере, одни сутки.

Расчет весовой концентрации пыли в мг/м 3 ведут по формуле

где т 1 и т 2 - вес фильтра до отбора и после отбора пробы, мг;

v - скорость отбора пробы по прибору, л/мин;

t - продолжительность отбора пробы, мин;

1000 - коэффициент пересчета объема воздуха, с л. на м 3 .

Весовой метод имеет несколько разновидностей в зависимости от материала поглотителя. Наиболее простой, удобный и более совершен­ный из них - метод с применением аналитических аэрозольных фильтров (АФА), в которых в качестве фильтрующего элемента использует фильтр Петрянова - ФП. Он состоит из равномерного слоя ультратонких волокон полимеров на марлевой подложке или без нее. Для исследования запыленности воздуха обычно применяет фильтры АФА-ВП-18 (иногда букву П опускают, например, АФА-В-18. «В» обо­значает «весовой», цифры «18» или «ГО» указывают фильтрующую по­верхность фильтров, см 2). В практике используют и другие марки фильтров АФА, например, АФА-БА-20, АФА-ХМ-20 и т.п., которые применяет для бактериальных, дисперсионных и химических анализов воздушной среды.

Кониметрия запыленного воздуха.

Во время отбора проб воздуха на фильтр иногда попадают крупные
частицы, не опасные для организма. Они при взвешивании искажают ис­тинный результат. В то же время более мелкие частицы, представляющие
большую опасность для организма, часто не улавливаются фильтром. По­
этому, наряду с применением весового метода, используют счетный (кониметрический) метод, который дает данные о величине и количестве
пылинок, содержащихся в воздухе. Известно, что через дыхательные пути
в организм человека заносятся пылинки размером до 10 мкм. В основе
метода лежит подсчет числа пылинок, содержащихся в 1 см 3 исследуемо­го воздуха. Метод служит дополнительной характеристикой к стандартному весовому мето­ду.

Косвенные методы. Кроме весового и счётного методов, существуют косвенные, когда о запыленности судят по ряду показателей физических свойств запыленно­го воздуха или пыли (оптические свойства, электрозаряженность, отраже­ние света, радиоактивность и т.п.). Контроль осуществляют такими приборами, как, например, фотопылемер Ф-1, радиометрический прибор ИЗВ-1, пылемер ДПВ-1 и др. Достоинство метода - быстрота анализа, т.е. немедленная оценка за­пыленности воздуха в мг/м 3 , простота обслуживания, доступность замера в любых точках помещения. Недостаток - довольно значительная погрешность (у некоторых при­боров до 30%), зависящая от свойства пыли или газа, и узкая сфера при­менения на определенный вид или род пыля.

3. Методика проведения исследований

1. Изучить методику и приборы для определения запыленности воздуха.

2. Экспериментально определить количества пыли, находящейся в
одном кубическом метре воздуха; данные записать в протокол, таблица 1.1.

3. Сопоставить полученные результаты с требованиями ГН 2.2.5.1313-03 и дать гигиеническую оценку состояния воздушной среды в
зоне дыхания.

4. Используя полученные данные, определись область их примене­ния.

Производственных помещений

Цель работы: определение концентрации пыли в воздухе весовым методом и санитарная оценка запыленности производственной среды.

Основные понятия и определения

Пылью называют дисперсную систему, состоящую из мельчайших твердых частиц, находящихся в газовой среде во взвешенном состоянии (аэрозоль) или осевших (аэрогель).

Пыль подразделяется на атмосферную и промышленную. Источниками образования промышленной пыли являются технологические процессы и производственное оборудование, связанное с измельчением (дробление, помол, резание) и поверхностной обработкой материалов (шлифование, полирование, ворсование и т.п.), транспортировкой, перемещением и упаковкой измельченных материалов и т.д. Атмосферная пыль включает промышленную (загрязнение атмосферного воздуха выбросами промышленных предприятий) и естественную, возникающую при выветривании горных пород, вулканических извержениях, пожарах, ветровой эрозии пахотных земель, пыли космического и биологического происхождения (пыльца растений, споры, микроорганизмы). К промышленным предприятиям, выбрасывающим в атмосферу частицы пыли, относятся предприятия черной металлургии, теплоэнергетики, химической, нефтеперерабатывающей промышленности, промышленности строительных материалов и др.

Гигиеническими нормативами ГН 2.2.5.686–98 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны» и ГОСТ 12.1.005–88 «ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны» установлены предельно допустимые концентрации для более чем 800 различных веществ (в мг/м 3). ПДК вредных веществ в воздухе рабочей зоны считается такая концентрация, которая при ежедневной работе в течение 8 часов или другой продолжительности, но не более 41 часа в неделю, в течение всего рабочего стажа не может вызвать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующего поколений. В прил. 1 приведены ПДК веществ в воздухе рабочей зоны.

Пыль классифицируют по следующим признакам: по роду вещества, из которого состоят частицы, степени дисперсности (измельчения), степени вредного влияния на организм человека, взрыво- и пожароопасности.

По происхождению пыль подразделяют на три основных подгруппы:

1. Органическая:

Естественная (растительного происхождения – древесная, хлопковая, и животного – костяная, шерстяная);

Искусственная (пыль пластмасс, резины, смол, красителей и других синтетических веществ).

2. Неорганическая:

Металлическая (стальная, медная, свинцовая);

Минеральная (песчаная, известковая, цементная).

3. Смешанная.

По дисперсности пыль подразделяют на три группы:

1) видимая (размеры частиц более 10 мкм);

2) микроскопическая (0,25-10 мкм);

3) ультрамикроскопическая (менее 0,25 мкм).

Опасность пыли увеличивается с уменьшением размера пылинок, так как такая пыль дольше остается в виде аэрозоля в воздухе и глубже проникает в легочные каналы.

Вредность воздействия пыли на организм человека зависит от степени запыленности воздуха, характеризующейся концентрацией (мг/м 3), и различных свойств пыли: химического состава, растворимости, дисперсности, формы частиц и адсорбционной способности. По воздействию на организм пыль подразделяется на ядовитую и неядовитую.

В организм человека пыль проникает тремя путями: через органы дыхания, желудочно-кишечный тракт и кожу.

В зависимости от состава пыль может оказывать на организм:

1. Фиброгенное действие – в легких происходит разрастание соединительной ткани, нарушающее нормальное строение и функции органа (кварцевая, породная).

2. Раздражающее действие на верхние дыхательные пути, слизистую оболочку глаз, кожу (известковая, стекловолокна).

3. Токсическое действие – ядовитые пыли, растворяясь в биологических средах организма, вызывают отравления (свинцовая, мышьяковистая).

4. Аллергическое действие (шерстяная, синтетическая).

5. Биологическое действие (микроорганизмы, споры).

6. Канцерогенное действие (сажа, асбест).

7. Ионизирующее действие (пыль урана, радия).

В легкие глубоко проникают пылинки размером от 0,1 до 10 мкм. Более мелкие выдыхаются обратно, а крупные оседают на слизистых оболочках полости носа, глотки, трахеи и выводятся наружу со слизью при кашле и чихании. Часть пыли задерживается в носу и носоглотке, вместе со слюной и слизью попадает в органы пищеварения. Более мелкие, не осевшие, пылевидные частицы при вдохе проникают в глубокие дыхательные пути, вплоть до ткани легких. В легких задерживаются частицы, не превышающие 7 мкм. При проникновении в дыхательные пути пыль может вызывать профессиональные заболевания – пневмокониозы (ограничение дыхательной поверхности легких и изменения во всем организме человека), хронические бронхиты, заболевания верхних дыхательных путей. Химический состав пыли определяет характер тех или иных профессиональных заболеваний. Например, при вдыхании угольной пыли возникает разновидность пневмокониоза – антракоз, алюминиевый алтинноз, свободного диоксида кремния SiO 2 – силикоз и т.д.

Попадая на кожу, пыль проникает в сальные и потовые железы и нарушает систему терморегуляции организма. Неядовитая пыль оказывает раздражающее воздействие на кожу, глаза, уши, дёсны (шероховатости, шелушение, угри, асбестовые бородавки, экземы, дерматиты, конъюктивиты и др.).

Растворимость пыли зависит от ее состава и удельной поверхности (м 2 /кг), поскольку химическая активность пыли в отношении организма зависит от общей площади поверхности. Сахарная, мучная и другие виды пыли, быстро растворяясь в организме, выводятся, не причиняя особого вреда. Нерастворимая в организме пыль (растительная, органическая и т.п.) надолго задерживается в воздухоносных путях, приводя в отдельных случаях к развитию патологических отклонений.

Форма пылинок влияет на устойчивость аэрозоля в воздухе и поведение в организме. Частицы сферической формы быстрее выпадают из воздуха и легче проникают в легочную ткань. Наиболее опасны пылинки с зазубренной колючей поверхностью, так как они могут вызывать травмы глаз, ткани легких и кожи.

Адсорбционные свойства пыли находятся в зависимости от дисперсности и суммарной поверхности. Пыль может быть носителем микробов, грибов, клещей.

Пыли могут также приобретать электрический заряд за счет адсорбции ионов из воздуха и в результате трения частиц в пылевом потоке, что увеличивает их вредное воздействие. Неметаллическая пыль заряжается положительно, а металлическая – отрицательно. Разноименно заряженные частицы притягиваются друг к другу и оседают из воздуха. При одинаковом заряде пылинки, отталкиваясь одна от другой, могут долго витать в воздухе. Заряженные частицы дольше задерживаются в легких, чем нейтральные, тем самым увеличивается опасность для организма.

Негативным свойством многих видов пыли является их способность к воспламенению и взрыву. В зависимости от величины нижнего предела воспламенения пыли подразделяются на взрывоопасные и пожароопасные. К взрывоопасным относятся пыли с нижним пределом воспламенения до 65 г/м 3 (сера, сахар, мука), к пожароопасным – пыли с нижним пределом воспламеняемости выше 65 г/м 3 (табачная, древесная и др.).

Для защиты от пыли на производстве применяется комплекс санитарно-гигиенических, технических, организационных и медико-биологических мероприятий. Эффективными средствами защиты являются: внедрение комплексной механизации и автоматизации производственных операций с автоматическим или дистанционным управлением и контролем, герметизация оборудования, приборов и коммуникаций, размещение опасных узлов и аппаратов вне рабочих зон, замена сухих способов переработки пылящих материалов мокрыми, применение местных отсосов от оборудования и аппаратуры, автоблокировка пусковых устройств технологического и санитарно-гигиенического оборудования, гидрообеспыливание. Эти средства относятся к общим методам защиты работающих и оборудования от пыли. В качестве индивидуальных средств защиты от пыли используются респираторы, противогазы, пневмошлемы, пневмомаски, непроницаемая противопыльная спецодежда, защитные очки и т.п. Важную роль играют также защита временем, ультрафиолетовое облучение в фотариях, щелочные ингаляции, проведение медосмотров, соблюдение личной гигиены, применение специального питания.

Воздух рабочей зоны (пространство высотой до 2 м над уровнем пола или площадки, на которых находятся места постоянного и временного пребывания работающих) очищается следующими способами: при сухом разломе материалов устанавливают улавливатели взвешенной в воздухе пыли, применяют пневматическое транспортирование полученного продукта, обеспечивают отсасывание (аспирацию ) пыли из-под укрытий в местах ее образования. Создаваемое при аспирации разрежение в укрытии, соединенном с воздуховодом вытяжной вентиляции, не позволяет загрязненному воздуху поступать в воздух рабочей зоны. Отсосы от оборудования и аппаратуры выполняют сблокированными с пусковым устройством основного оборудования. Перед выбросом в атмосферу или рабочее помещение запыленный воздух подвергают предварительной очистке.

Важным показателем работы обеспыливающего оборудования является степень очистки воздуха:

где m 1 и m 2 – содержание пыли в воздухе соответственно до и после очистки, мг/м 3 ; V 1 и V 2 – объем воздуха соответственно до и после очистки, м 3 .

Очистка воздуха от пыли может быть грубой (задерживается крупная пыль – размеры частиц более 100 мкм), средней (задерживается пыль с размером частиц менее 100 мкм, а ее конечное содержание не должно быть более 100 мг/м 3) и тонкой (задерживается мелкая пыль (до 10 мкм) с конечным содержанием в воздухе приточных и рециркуляционных систем до 1 мг/м 3). Обеспыливающее оборудование подразделяется на пылеуловители и фильтры . К пылеуловителям относятся пылеосадочные камеры, одиночные и батарейные циклоны, инерционные и ротационные пылеуловители. Фильтры в зависимости от принципа действия классифицируют на электрические, ультразвуковые, масляные, матерчатые, рукавные и др. (см. рис. 2.1–2.3).

А Б

Рис. 2.1. Пылеуловительные камеры:

а – простая; б – лабиринтная

Рис. 2.2. Схема циклона:

1 – входной патрубок; 2 – дно конической части; 3 – центробежная труба

Рис. 2.3. Электрический (а ) и ультразвуковой (б ) фильтры:

1 – изолятор; 2 – стенка фильтра; 3 – коронирующий электрод; 4 – заземление;

5 – генератор ультразвука; 6 – циклон

Для определения качества воздуха на рабочем месте существуют методы контроля, которые подразделяются на две группы: первая – с выделением дисперсной фазы из аэрозоля (весовой и счетный методы), вторая – без выделения дисперсной фазы из аэрозоля (фотоэлектрические, электрометрические, радиационные и оптические методы). Наиболее часто применяются весовой и счетный методы. Обычно в практике инспекторского контроля предпочтение отдают весовому методу.

Весовой метод

Весовой метод является наиболее гигиенически обоснованным методом оценки запыленности воздуха рабочей зоны. Он положен в основу действующей системы стандартов безопасности труда (ССБТ) как стандартный. Сущность метода заключается в том, что определенный объем запыленного воздуха пропускают через высокоэффективный фильтр и по увеличению массы и объему профильтрованного воздуха рассчитывают массовую концентрацию пыли:

где с – массовая концентрация пыли, мг/м 3 ; G n – масса пыли, осевшей на фильтре, мг; V 0 – объем профильтрованного воздуха, приведенного к нормальным условиям (температуре 0 о С и барометрическому давлению B 0 = 760 мм рт. ст.), м 3 .

, (2.2)

где P 0 , P – барометрическое давление, Па, соответственно при нормальных и рабочих условиях (P 0 = 101325 Па, P = B×133,322 Па); Т – температура воздуха в месте отбора пыли, о С; V – объем воздуха, пропущенного через фильтр при температуре Т и давлении В , м 3 ,

где w – объемная скорость просасывания воздуха через фильтр, л/мин;
t – продолжительность отбора пробы, мин.

Счетный метод

В ряде отраслей промышленности предъявляются повышенные требования к чистоте воздушной среды, например для изготовления радиоэлектронной аппаратуры, кинофотоматериалов, медицинских препаратов и т.п. Здесь действуют ведомственные нормы к качеству воздуха, которые устанавливают предельно допустимые концентрации пыли в счетных показателях, выражающихся в числе частиц на литр или на см 3 . Контроль запыленности воздуха в этом случае осуществляется счетным методом. Сущность его заключается в предварительном выделении пыли из воздуха и осаждении ее на предметных стеклах с последующим подсчетом числа частиц с помощью микроскопа. Разделив определенное расчетом число частиц на объем воздуха, из которого они осаждены, получают счетную концентрацию пыли (частиц/л):

,

где К п – количество полей зрения (клеток сетки) в 1 см 2 окуляра микроскопа; n ср – среднее количество пылинок в одном поле зрения, определенное на основе подсчета в пяти различных клетках; F – площадь основания емкости, из которой осаждены пылинки, см 2 ; V, h – объем и высота этой емкости соответственно, см 3 и см.

Для определения счетной концентрации пыли применяются кониметры, состоящие из увлажнительной трубки, поршневого насоса, приемной камеры и предметного стекла, поточные ультрамикроскопы ВДК, фотоимпульсные приборы и др. Наиболее распространен автоматический счетчик частиц типа АЗ-2М, позволяющий одновременно с замером счетной концентрации определять дисперсный состав пыли.


Похожая информация.


производится аспирационным весовым (гравиметрическим) методом с помощью электроаспиратора (рис. 2).

Рис. 2. Электроаспиратор для отбора разовых проб пыли

Пыль − это дисперсная система, где раздробленное ве-щество (дисперсная фаза) находится в непрерывной дис-персной среде, т.е. это взвешенные в воздухе, медленно осе-дающие твердые частицы размером от 0,001 до 100 мкм или аэрозоль.

Принцип действия электроаспиратора заключается в протягивании определенного объема воздуха через аспира-


тор с осаждением пылевых частиц на бумажном фильтре. Метод основан на улавливании пыли из просасываемого че-рез фильтр воздуха при стандартной скорости аспирации 10-20 л/мин. с последующим пересчетом на 1 м 3 воздуха (1 м 3 = 1000 л). Анализ воздуха может производиться как в пробах, отобранных однократно (продолжительность отбора проб 15-20 мин.), так и многократно не менее 10 раз в сутки через равные интервалы времени с усреднением полученных дан-ных (кратность отбора проб в течение суток определяет вы-бор для оценки вида ПДК – среднесуточной или максималь-ной разовой). Отбор проб воздуха производят в зоне дыха-ния. Для отбора пробы фильтр укрепляют в аллонже (патро-не) электроаспиратора, пропускают через него воздух со ско-ростью 20 л/мин. (V ) в течение 10 мин. (Т ). Объем отобран-ной пробы воздуха рассчитывают по формуле:

υ=Т V,

где T – время отбора пробы, мин., V – скорость отбора про-бы, л/мин. Негигроскопичный аэрозольной фильтр, пред-ставляющий собой ультратонкие волокна полимера, зафик-сированный в бумажном кольце, взвешивают на аналитиче-ских весах с точностью до 0,1 мг до (А 1 ) и после (А 2 ) отбора пробы воздуха. Содержание пыли Х в 1 м 3 воздуха рассчиты-вают по формуле:

Х = [(А 2 − А 1) 1000]/ υ,

где Х – содержание пыли в воздухе, мг /м 3 ; А 1 и А 2 − вес фильтра до и после отбора пробы, мг; υ − объем воздуха, л.

Для гигиенической оценки загрязнения воздуха пылью установленное содержание пыли сравнивают с максимальной или среднесуточной ПДК нетоксичной пыли в атмосферном воздухе; характеризуют дисперсный и химический состав, морфологическое строение, электрическое состояние, приро-ду (органическая, неорганическая, смешанная) и механизм образования (аэрозоль дезинтеграции или конденсации).


Гигиенические нормативы пыли для атмосферного воз-

− максимальная разовая ПДК мр 2 = 0,5 мг/м 3 ,

− среднесуточная ПДК с/с 3 = 0,15 мг/м 3 .

В помещениях ЛПУ требования к содержанию пыли в воздухе определяются классификацией помещений по чисто-те и ограничиваются размером частиц 0,5 мкм и 5,0 мкм.



В производственных помещениях: ПДК нетоксичной пыли = 10 мг/м 3 , ПДК пыли, содержащей свободный диоксид кремния, = 1-2 мг/м 3 .

3. Определение микробного загрязнения воздуха осу-

ществляется аспирационным методом в модификации Кро-това. Аппарат Кротова представляет собой аспиратор со съемной крышкой. Исследуемый воздух всасывается со ско-ростью 20-25 л/мин. через клиновидную щель в крышке при-бора. При переносе аппарата Кротова из одного помещения в другое его поверхность обрабатывают дезинфицирующим раствором. Пробу воздуха отбирают 10 мин. (Т ) со скоро-стью 20 л/мин (V ). Объем отобранной пробы воздуха рассчи-тывают по формуле.

Воздух протягивается 1 минуту по 20 л/мин. Вес фильтра до взятия пробы 707,40 мг. , после отбора пробы - 708,3 мг. Температура воздуха в помещении 22°С, атмосферное давление 680 мм.рт.ст.

1. Объем воздуха, протянутого через фильтр, приведем к нормальным условиям:

2. Концентрация пыли в воздухе:

После расчета концентрации пыли в воздухе произвести гигиеническую оценку запыленности воздушной среды путем сопоставления с требованиями СН-245-71 о предельно допустимых концентрациях пыли в воздухе.

Цель работы.

Применяемые приборы и оборудование.

  • 3. Протокол измерений (см табл. 4), расчет концентрации пыли по приведенным формулам, определение дисперсности пыли (см. табл. 4).
  • 4. Выводы: гигиеническая оценка запыленности воздуха и рекомендации по улучшению состояния воздушной среды.

Контрольные вопросы

запыленность воздух концентрация проба

Классификация пыли по различным признакам.

Гигиеническая оценка запыленности воздуха.

Воздействие пыли, на организм человека.

Профессиональные заболевания, вызываемые воздействием пыли.

Предельно допустимые концентрации вредных веществ в воздухе рабочей зоны.

Классификация вредных веществ по степени воздействия.

Предельно допустимые концентрации вредных выбросов.

Методы определения запыленности.

9. Устройство приборов для определения концентрации пыли.

Приборы, применяемые при счетном методе анализа запыленности.

Правила отбора проб для определения запыленности.

Методы определения запыленности воздуха

Запыленность воздуха можно определить гравиметрическим (весовым), счетным (микроскопическим), фотометрическим и некоторыми другими методами.

Удаление пыли из воздуха может быть осуществлено различными способами: аспирационным, основанной на просасывании воздуха через фильтр; седиментационными, основанный на процессе естественного оседания пыли на стеклянные пластинки или банки с последующим подсчетом массы пыли, осевший на 1 м поверхности; с помощью электроосаждения, принцип которого заключается в том, что создается электрическое поле большого напряжения, в котором пылевые частицы электризуются и притягиваются к электродам.

В санитарно-гигиенической практике основным методом определения запыленности принят гравиметрический метод, потому что при постоянстве химического состава первичное значение имеет масса пыли, задержалась в организме человека. Определение только массы пыли не дает полной картины его вредности для человека и технологического процесса, так как при одинаковой массе может быть разный химический, гранулометрический состав пыли, что сказывается на его воздействии на человека, оборудования и технологии. Полная характеристика пыли состоит из его массы, содержащейся в единице объема воздуха, химического и дисперсного состава.

Счетный (микроскопический) метод дает возможность определить общее количество пылевых частиц в единице объема воздуха и соотношение их размеров. Для этого пыль, содержащаяся в определенном объеме воздуха, осаждают на стекло, покрытое прозрачной клейкой пленкой. Под микроскопом определяют форму, количество и размеры пылевых частиц.

Качественную характеристику пыли определяют фотометрическим методом с Помощью текущего ультрафотометра, которым регистрируются отдельные пылевые частицы с помощью сильного бокового света.

Для отделения пыли от воздуха применяются различные фильтры, которые задерживают пылевые частицы размером до 0,1 мкм и более, в зависимости от размера пор фильтра. Такие фильтры выпускаются во многих странах. Материал фильтров может быть различным в зависимости от его назначения: целлюлоза, синтетические материалы, асбест (для определения горючих частиц пыли). Также применяются комбинированные фильтры. Выпускаются специальные фильтры, пропитанные иммерсионных маслом, что делает их прозрачными - это и позволяет дополнительно делать микроскопические исследования пыли.

В Украине чаще всего применяются фильтры АФА (аналитический фильтр аэрозольный) круглой формы с плоскостями фильтрации 3; 10, 20 см2, которые имеют опорное кольцо, фильтрующий элемент и защитное бумажное кольцо с выступлением. Фильтрующий элемент состоит из равномерного слоя ультратонких волокон из полимера на марлевой основе или без нее (фильтр Петрянова). Фильтры позволяют работать с ними без предварительного подсушивания через гидрофобные свойства полимера.

Методы нормализации состава воздуха рабочей зоны

Существует много различных способов и мер, предназначенных для поддержания чистоты воздуха производственных помещений в соответствии с требованиями санитарных норм. Все они сводятся к конкретным мерам:

1. Предотвращение проникновения вредных веществ в воздухе рабочей зоны за счет герметизации оборудования, уплотнения соединений, люков и отверстий, совершенствование технологического процесса.

2. Удаление вредных веществ, попадающих в воздух рабочей зоны, за счет вентиляции, аспирации или очистки и нормализации воздуха с помощью кондиционеров.

3. Применение средств защиты человека.

Герметизация и уплотнение являются основными мерами по совершенствованию технологических процессов, в которых используются или образуются вредные вещества. Применение автоматизации позволяет вывести человека из загрязненного помещения в помещение с чистым воздухом. Совершенствование технологических процессов позволяет заменять вредные вещества безвредными, отказываться от применения пылящих процессий, заменять твердое топливо на жидкое или газообразное, устанавливать газ, пылеуловители в технологический цикл и др.

При несовершенства технологии, когда избежать проникновения вредных веществ в воздух не удается, применяют их интенсивное удаление с помощью вентиляционных систем (газ, пар, аэрозоли) или аспирационных систем (твердые аэрозоли). Установка кондиционеров воздуха в помещениях, где есть особые требования к его качеству, создает нормальные микроклиматические условия для работающих.

Особые требования предъявляются к помещениям, где проводятся работы с вредными веществами, пылящих. Так, пол, стены, потолок должны быть гладкими, легко мыться. В цехах, где выделяется пыль, регулярно делают влажную или вакуумное уборки.

В помещениях, где нельзя создать нормальные условия, соответствующие нормам микроклимата, применяют средства индивидуальной защиты (313).

Согласно ГОСТ 12.4.011-87 "ССБТ Средства защиты работающих. Классификация", все 313, в зависимости от назначения, делятся на следующие классы: изолирующие костюмы, средства защиты органов дыхания, одежда специальная защитная, средства защиты ног, средства защиты рук, средства защиты головы, средства защиты лица, средства защиты глаз, средства защиты органов слуха, средства защиты от падения с высоты и другие меры предосторожности, защитные дерматологические средства, средства защиты комплексные.

Эффективное применение 313. зависит от их правильного выбора и условий эксплуатации. При выборе необходимо учитывать конкретные условия производства, вид и длительность воздействия вредного фактора, а также индивидуальные особенности человека. Только правильное применение 313 может максимально защитить работающего. Для этого работники должны быть ознакомлены с ассортиментом и назначением 313.

Для работы с ядовитыми и загрязняющих веществ пользуются спецодеждой - комбинезонами, халатами, фартуками и др.; для защиты от кислот и щелочей - резиновой обувью и перчатками. Для защиты кожи, рук, лица, шеи применяют защитные кремы и пасты: антитоксические, водостойкие, Жиростойкие. Глаза от возможных ожогов и аэрозолей защищают очками с герметичной оправой, масками, шлемами.

К средствам индивидуальной защиты органов дыхания (СИЗОД) относятся респираторы, промышленные противогазы и изолирующие дыхательные аппараты, применяемые для защиты от вредных веществ (аэрозолей, газов, паров), находящихся в окружающей воздухе.

По принципу действия СИЗОД подразделяются на фильтрующие (применяются при наличии в воздухе свободного кислорода не менее 18% и ограниченного содержания вредных веществ) и изолирующие (при недостаточном для дыхания содержания в воздухе кислорода и неограниченного количества вредных веществ).

По назначению фильтрующие СИЗОД делятся на:

противопылевые - для защиты от аэрозолей (респираторы ШБ-1, "Лепесток", "Кама", "Снежок", У-2К, РП-К, "Астра-2", Ф-62Ш, РПА и др.);

противогазовые - для защиты от газопароподибних вредных веществ (респираторы РПГ-67А, РПГ-67В, РПГ-67КД, противогазы марок А, В, КД, Г, Е, СО, М, БКФ и др.);

газопылезащитные - для защиты от парогазоподибних и аэрозольных вредных веществ одновременно (Респираторы Ру 60М, "Снежок ПГ", "Лепесток-Г");

изолирующие аппараты - бывают шланговые и автономные.

Изолирующие шланговые аппараты предназначены для работы в атмосфере, содержащий менее 18% кислорода. Они имеют длинный шланг, по которому подается воздух для дыхания с чистой зоны. Недостатки их в том, что дыхательный шланг мешает работать, не позволяет свободно двигаться (противогаз шланговый ПШ-И без принудительной подачи воздуха, длина шланга 10 м; ПШ-2 с воздуходувкой - обеспечивает работу двух человек одновременно, длина шлангов 20 м; респиратор для художников РМП-62; пневмошлемы ЛИЗ-4, ЛИЗ-5, миотом-49 - работают от компрессорной воздушной линии).

Изолирующие автономные дыхательные аппараты работают от автономного химического источника кислорода или от баллонов с воздухом или дыхательной смесью. Они предназначены для выполнения спасательных работ или эвакуации людей из загазованной зоны.

Саморятивиик шахтный малогабаритный ШСМ-1. Имеет химический источник кислорода. Срок пользования 20-100 минут в зависимости от интенсивности расходования кислорода (энергозатрат), вес 1,45 кг.

Респиратор изолирующий вспомогательный РВЛ-1. Имеет баллон со сжатым кислородом и регенеративный химический патрон для регенерации кислорода. Работает 2:00, вес 9 кг.

Респиратор "Урал-7". Принцип действия такой же, как в респиратора РВЛ-И, но он более габаритный. Действует 5:00, весит 14 кг. Носится за плечами, масс амортизационные устройства для удобства ношения.

Респиратор Р-30 имеет такую ​​же систему жизнеобеспечения, и приведенный выше. Рассчитан на 4:00 действия, весит 11,8 кг.

Дыхательный аппарат АСВ-2 состоит из 2-х воздушных баллонов, маски или загубника, шланга, редуктора, имеет манометр для контроля за давлением воздуха, предохранительный клапан и др. Предназначен для защиты органов дыхания в условиях загрязненной атмосферы.