Расчет максимального часового и секундных расходов воды. Определение расчетных минимальных расходов воды при отсутствии гидрометрических данных Как посчитать секундный расход воды

Для определения максимального секундного расхода воды поселка необходимо сначала найти ординаты суммарного часового графика водопотребления. Распределение суточных максимальных расходов воды по часам суток (в %) принимается в зависимости от коэффициентов часовой неравномерности. Коэффициент часовой неравномерности принимается по приложению 6 .

Для коммунального сектора коэффициент часовой неравномерности водопотребления рекомендуется определить только по максимальному значению

К ч.мах =a мах · b мах; (1.9)

где: a ма x - коэффициент, учитывающий степень благоустройства зданий, режим работы предприятий, принимается a ма x =1,2-1,4; β мах - коэффициент, учитывающий количество жителей, в населенном пункте, принимают по приложению 5.

Для населения, пользующегося водоразборными колодцами (табл. 1.1. - 4400 чел) согласно приложению 5

К ч.макс. = 1,4 · 1,5 = 2,1

Для населения, проживающего в благоустроенных домах (табл.1.1. - 4500 чел.)

К ч.макс = 1,4 · 1,5 = 2,1

Среднее значение К ч.макс =

Окончательно можно принять К ч.макс = 2,1

По величине К ч.макс = 2,1 подбирается типовой график распределения воды по часам суток в коммунальном секторе (см. приложение 6).

Распределение расходов воды по часам суток в коммунальном секторе определяется в зависимости от величины коэффициента часовой неравномерности водопотребления К ч.

Предприятие работает в две смены с 7 до 23 часов. Вода на технологические нужды расходуется равномерно по 6,25 % в час от расчетного суточного расхода воды предприятия.

Таблица 1.3

Распределение расходов воды по часам суток.

Часы суток Коммунальный сектор Производст-венный сектор Полив зеленых насаждений Животновод-ческий сектор Общий расход по населенному пункту Ордината интегральной кривой,%
% м³/ч % м³/ч % м³/ч % м³/ч Путевой, м³/ч Сосред., м³/ч Общий, м³/ч %
0-1 1,96 36,1 0,50 1,95 36,1 1,95 38,05 1,48 1,48
1-2 0,96 17,68 1,00 3,90 17,68 3,90 21,58 0,84 2,32
2-3 0,85 15,29 0,50 1,95 15,29 1,95 17,24 0,67 2,99
3-4 0,96 17,68 0,50 1,95 17,68 1,95 19,68 0,76 3,75
4-5 1,12 20,63 2,20 8,58 20,63 8,58 29,21 1,13 4,88
5-6 2,31 42,55 2,20 8,58 42,55 8,58 51,13 1,99 6,87
6-7 5,28 97,25 16,7 53,4 4,20 18,33 150,65 18,33 168,98 6,57 13,44
7-8 5,55 102,22 6,25 1,24 16,6 53,4 4,70 18,33 155,62 19,57 175,19 6,81 20,25
8-9 7,12 131,14 6,25 1,24 16,7 53,4 10,2 39,78 184,54 41,02 225,56 8,77 29,02
9-10 6,86 126,35 6,25 1,24 5,40 21,06 126,35 22,30 148,65 5,78 34,80
10-11 5,82 107,20 6,25 1,24 7,20 28,08 107,20 29,32 136,52 5,31 40,11
11-12 5,41 99,64 6,25 1,24 6,10 23,79 99,64 25,03 124,67 4,85 44,96
12-13 3,58 65,94 6,25 1,24 4,20 16,38 65,94 17,62 83,56 3,24 48,20
13-14 3,27 60,23 6,25 1,24 9,10 35,49 60,23 36,73 96,96 3,77 51,97
14-15 2,96 54,52 6,25 1,24 6,60 25,74 54,52 26,98 81,50 3,17 55,14
15-16 3,87 71,28 6,25 1,24 2,00 7,80 71,28 9,04 80,32 3,12 58,26
16-17 4,45 81,96 6,25 1,24 4,20 16,38 81,96 17,62 99,58 3,87 62,13
17-18 4,17 76,80 6,25 1,24 16,7 53,4 3,60 14,04 130,20 15,28 145,48 5,66 67,79
18-19 4,73 87,12 6,25 1,24 16,7 53,2 8,20 31,98 140,50 33,22 173,72 6,76 74,55
19-20 6,09 112,17 6,25 1,23 16,6 53,2 7,20 28,08 165,37 29,31 194,68 7,57 82,12
20-21 6,61 121,74 6,25 1,23 3,50 13,65 121,74 14,88 136,62 5,31 87,43
21-22 7,10 130,77 6,25 1,23 4,60 17,94 130,77 19,17 149,94 5,83 93,26
22-23 6,35 116,96 6,25 1,23 0,80 3,12 116,96 4,35 121,31 4,72 97,98
23-24 2,64 48,62 0,80 3,12 48,68 3,12 51,74 2,02
Итого 1841,84 19,8 2161,84 409,80 2571,64

В животноводческом комплексе, К ч =2,50. Распределение расходов воды по часам суток в животноводческом комплексе принято по приложению 6.

Распределение расходов воды по часам суток прачечной и баней принимается из расчета их работы в сутки с 8 до 24 часов.

Полив зеленных насаждений производится равномерно два раза в сутки: с 6 до 9 часов и с 17 до 20 часов (см. таб. 1.3).

Больница работает круглосуточно.

Все расчеты по определению часовых расходов воды в поселке сводятся в таблицу 1.3.

При вычислении таблицы 1.3 необходимо контролировать подсчеты. Так итог граф З, в таблице должен быть равен расчетному максимальному суточному расходу воды коммунального сектора (1841,64 м 3 /сут) - итог графы 7 равен суточному расходу воды на полив зеленных насаждений. Итог графы 9, равен расчетному максимальному суточному расходу в животноводческом комплексе 390 м 3 /сут. Итог графы 12, табл. 1.3 равен расчетному суточному расходу воды населенного пункта 257,64 м 3 /сут.

На основании табл. 1.3 по данным графы 1, 13 строится сводный суточный график водопотребления в % от расчетного расхода воды в сутки наибольшего водопотребления (рис. 1.1)

Рис.1.2. Сводный суточный график водопотребления в населенном пункте и совмещенный график водопотребления и работы насосной станции: Р-% от максимального суточного расхода воды; Т–часы суток; Р"–ординаты интегральной кривой; 1–график водопотребления в населенном пункте; 2-интегральная кривая водопотребления; 3 – график работы насосной станции 2-го подъема с 4 до 23 часов; И=5,7, Н=5,2 – соответственно избыток и недостаток воды; 4- график работы насосной станции при 24 часовом режиме, И"= 16%, Н"=5%.

Максимальный секундный расход q с.макс. в л/с равен

; (1.10)

л/с

Cекундный путевой расход q c . пут.сети включающий расход коммунального сектора q c .ком и расход на полив зеленых насаждений q c .пзн:

л/с,

где л/с; л/с;

Каждая секция жилого дома рассчитана на 35 квартир, всего в здании 35 · 2 секции = 70 квартир.

Количество потребителей на одном этаже секции составит: (2 кв. · 4 чел.) + (3 кв. · 2 чел.) = 14 чел. В одной секции – 14 · 7 эт. = 98 чел. В жилом здании – 2 секции · 98 чел. = 196 чел.

С учетом степени благоустройства общая норма расхода воды составят 300 л на чел.в сутки, в час наибольшего водопотребления норма расхода холодной воды 5,6 л/ч .

Расчет начинаем с определения расчетного расхода холодной воды на вводе в здание. Так как в здании одинаковые потребители, то вероятность действия приборов Р будет постоянна для всех участков. Вероятность действия приборов Р определяем по формуле

,

где Р – вероятность действия приборов;

– общая норма водопотребления воды в час наибольшего водопотребления, л/ч×чел. .

U – число потребителей (жильцов) в доме, 196 чел.;

– секундный расход воды расчетным прибором, 0,2 л/с (прил. 2, ), при наличии в здании поливочных кранов = 0,3 л/с;

N – общее количество приборов в здании, N = 299 шт. (3 прибора в однокомнатной кв. и 6 приборов в трехкомнатной кв. Итого: 3 прибора · 3 кв. + 6 приборов · 2 кв. = 21 прибор на этаже секции. 21 прибор · 7 эт = 147 приборов в секции. 147 приборов · 2 секции = 294 прибора в доме + 2 смесителя в мусоросборных камерах + 3 поливочных крана = 299 приборов)

Находим произведение:

РN = 0,003399 · 299 = 1,016301.

Тогда максимальный расчетный секундный расход воды, л/с, на вводе будет равен

где q – максимальный секундный расход прибора, 0,3 л/с;

a – коэффициент, зависящий от вероятности действия приборов и их количества α → f(РN), по прилож. 4 α = 0,977:

q c = 5· 0,977· 0,3 = 1,466 л/с.

Расчет ввода

Расчет ввода сводится к определению диаметра ввода и потерь напора на вводе, возникающих при пропуске расчетного расхода.

В зависимости от величины q c по таблицам гидравлического расчета водопроводных труб подбирают диаметр ввода и величину потерь на единицу его длины.

По табл. для q c = 1,466 л/с при оптимальной скорости в пределах 0,9 … 1,2 м/с находим: диаметр ввода - 40 мм, удельные потери на трение – 0,0935 м; скорость – 1,163 м/с.

Общая величина потерь на вводе определяется по формуле

H ltot = i en · l en · K m ,

где i en = 0,0935 м – удельные потери на трение на вводе при расчетном расходе, л/с;

l en = 21 м – длина ввода;

K m = 1,1 – коэффициент, учитывающий потери напора в местных сопротивлени-ях на вводе:

H l = 0,0935 · 21 · 1,1 = 2,16 м.

Подбор водомеров

Для учета расхода холодной воды на вводе в здание у наружной стены в легкодоступном, освещенном и отапливаемом помещении (температура воздуха должна быть не ниже 5 0 С) предусматриваем установку водомера. Подбор калибра водомера производим по среднечасовому расходу холодной воды в сутки максимального водопотребления. Среднечасовой расход воды может быть определен по следующей формуле:

Где - среднечасовой расход воды, м 3 /ч;

Норма расхода холодной воды в сутки наибольшего водопотребления, 180 л/(чел.· сут), прил. 3 ;

U = 196 чел – число водопотребителей;

Т = 24 ч – период водопользования,

1,47 м 3 /ч.

Эксплуатационный расход воды выбранного счетчика должен быть не менее данного среднечасового расхода воды. По табл. 1 выбираем крыльчатый водомер калибра 15 мм.

Правильность выбранного водомера проверяем на пропуск расчетного максимального секундного расхода воды, при котором потери напора в водомере не должны превышать 5,0 м.

Потери напора в водомере следует определять по формуле:

h = S (q c ) 2 ,

где h – потери напора в водомере, м;

S – гидравлическое сопротивление водомера, S = 14,5 м·(л/с) -2 , см. табл. 1;

q c – максимальный секундный расход холодной воды на вводе, q c = 1,466 л/с,

h = 14,5 · (1,466) 2 = 30,1 м.

Так как потери напора превосходят допустимые, увеличиваем диаметр водомера, принимаем крыльчатый водомер диаметром 20 мм с гидравлическим сопротивлением, равным 5,18 м·(л/с) -2 , тогда потери напора при пропуске максимального секундного расхода воды

h = 5,18 · (1,466) 2 = 12,5 м.

Таблица 1

Технические характеристики водомеров

Диаметр условного прохода счетчика, мм Параметры
Расход воды, м 3 /ч Порог чувствитель-ности, м 3 /ч, не более Макс. объем воды за сутки, м 3 Гидравлич. сопротивление счетчика S, м·(л/с) -2
Миним. Эксплуатац. Макс.
0,03 1,2 0,015 14,5
0,05 0,025 5,18
0,07 2,8 0,035 2,64
0,1 0,05 1,3
0,16 6,4 0,08 0,5
0,3 0,15 0,143
1,5 0,6 810×10 -5
0,7 264×10 -5
1,2 76,6×10 -5
1,6 13×10 -5
3,5×10 -5
1,8×10 -5

Так как условия не выполняются, принимаем к установке крыльчатый водомер диаметром 25 мм (ВК-25) с гидравлическим сопротивлением равным 2,64 м·(л/с) -2 . Тогда потери напора в водомере при пропуске расчетного расхода составят

h = 2,64 · (1,466) 2 = 5,7 м.

Так как условия не выполняются, принимаем к установке крыльчатый водомер диаметром 32 мм (ВК-32) с гидравлическим сопротивлением равным 1,3 м·(л/с) -2 . Тогда потери напора в водомере при пропуске расчетного расхода составят

h = 1,3 · (1,466) 2 = 2,79 м.

Некоторые технические характеристики выбранного водомера приведены в табл. 2.

Таблица 2

Расчетные параметры принятого водомера

Гидравлический расчет

Определив расходы воды на ввод здание и подобрав водомер, переходим к гидравлическому расчету внутренней водопроводной сети.

За диктующую точку на сети внутри здания принят смеситель для умывальника, расположенный на 7-ом этаже в крайней левой секции здания, наиболее удаленного и высоко расположенного относительно ввода. Перед этим прибором необходимо обеспечить максимальный свободный напор Н f = 3 м ( прил. 2). Расчетные точки внутри здания проставлены на расчётной схеме и на аксонометрической схеме.

Гидравлический расчет начинаем с определения параметров сети по главному направлению, последовательно от диктующей точки к вводу в здание. Диаметр трубопроводов внутриквартирной разводки конструктивно принимаем 15 мм. Расход холодной воды расчетным прибором на этажах равен = 0,2 л/с

Результаты расчета сводим в табл. 3.

Таблица 3

Расчет водопроводной сети по стояку Ст. В1-1

Расчетные участки Длина участка l, м Вероятность действия приборов Р Общее число приборов на участке Произведение Р·N Коэффициент α Расчетный расход, л/с Диаметр трубопровода, мм Скорость воды, V м/с Потери напора по длине трубопровода
Удельные i , м На участке i·l , м
= 0,2 л/с
1-2 1,66 0,003399 0,003399 0,2 0,2 1,17 0,354 0,588
2-3 0,55 0,006798 0,2 0,2 1,17 0,354 0,195
3-4 3,7 0,010197 0,2 0,2 0,62 0,072 0,266
4-5 2,8 0,020394 0,215 0,215 0,68 0,089 0,249
5-6 2,8 0,030591 0,238 0,238 0,74 0,103 0,288
6-7 2,8 0,040788 0,257 0,257 0,8 0,118 0,33
7-8 2,8 0,050985 0,2745 0,2745 0,85 0,133 0,372
8-9 2,8 0,061182 0,2905 0,2905 0,9 0,145 0,406
9-10 5,56 0,071379 0,306 0,306 0,95 0,16 0,89
= 0,3 л/с
10-11 7,23 0,003399 0,074778 0,3105 0,466 0,88 0,1 0,723
11-12 0,55 0,146157 0,395 0,593 1,12 0,156 0,086
12-13 4,52 0,217536 0,464 0,696 0,736 0,049 0,222
13-14 2,58 0,220935 0,468 0,702 0,742 0,050 0,129
14-15 0,28 0,292314 0,527 0,791 0,831 0,062 0,017
15-16 10,5 0,435072 0,634 0,951 1,001 0,088 0,924
16-17 0,25 0,438471 0,637 0,956 1,006 0,089 0,022
17-18 0,53 0,50985 0,685 1,028 1,053 0,0972 0,052
18-19 4,5 1,016301 0,977 1,466 1,163 0,0935 0,421
H ltot = 6,18 м

Требуемый напор воды для здания рассчитываем, зная отметки расположения расчетного прибора и ввода воды в здание, тип расчетного прибора и соответственно свободный напор на излив из него, общие потери напора при движении от городской магистральной сети до расчетного прибора, по формуле:

Н tr = H qeom + H l + h + H l,tot + H m + H f ,

где H qeom – геометрическая высота расположения диктующего прибора, определяемая по разности отметок этого прибора и верха трубы городского водопровода:

H qeom = 16,8 + 0,8 + 1 + 2,1 = 20,7 м,

здесь 16,8 м – отметка перекрытия седьмого этажа;

0,8 м – высота установки крана-смесителя для умывальника;

1 м – высота перекрытия первого этажа над уровнем земли;

2,1 м – глубина заложения городского водопровода по своду трубы; (2,3 – d200мм.)

H l = 2,16 м потери напора на вводе;

h = 2,79 м – потери напора в водомере;

H ltot = 6,18 м – сумма потерь напора по длине трубопровода от водомерного узла до расчетного прибора (см. табл. 3);

H m – потери напора на местные сопротивления, принимаются равными 30 % от потерь напора по длине трубопровода:

H m = = = 1,854м;

H f = 3 м – свободный напор расчетного прибора, прил. 2, .

Н tr = 20,7 + 2,16 + 2,79 + 6,18 + 1,854 + 3 = 36,684 ≈ 36,7 м.

Так как расчетный требуемый напор больше гарантированного, для обеспечения бесперебойной работы системы водоснабжения необходимо установить насосы.

Требуемый напор насосов

Н р = Н tr - H q ,

где Н tr = 36,7 м– требуемый напор воды для здания;

Н g = 29 м– гарантированный напор воды в сети холодного водопровода,

Н р = 36,7 - 29 = 7,7 м.

Рабочий расход насоса q c = 1,466 л/с или 1,466 · 3,6 = 5,28 м 3 /ч.

С учетом потерь напора в насосе, равных 2 м,

Н р = 7,7 + 2 = 9,7 м.

Таким образом, следует подобрать и установить в подвальном помещении повысительные насосы (один рабочий, один резервный) с рабочим расходом q c ≥ 1,466 л/си напором Н р ≥ 9,7м.

Таким насосом мог бы быть «инлайн» насос Grundfos TP 32-150/2В с характеристиками Q = 8 м 3 /ч, Н р = 14 м.


Похожая информация.


Средний за год суточный расход воды ,м 3 /сут, определяется по формуле

где

Т.к. для района А степень санитарно-технического оборудования зданий равна 5, то суточная норма водопотребления для этого района по равна 180 л/сут, а для района Б степень санитарно-технического оборудования зданий равна 6, следовательно, суточная норма водопотребления для этого района по равная 210 л/сут.

1.2.2 Определение расчетного расхода воды

Расчетныйрасход воды в сутки наибольшего водопотребления ,м 3 /сут, определяют по формуле

где

С учётом всего выше перечисленного получаем

Расчетныйрасход воды в сутки наименьшего водопотребления ,м 3 /сут, определяют по формуле


С учётом всего выше перечисленного получаем

1.2.3 Определение расчетного часового расхода воды

Максимальный и минимальный расчетный часовые расход воды , м 3 /ч и, м 3 /ч определяются по формулам

,

,

где

Коэффициенты часовой неравномерности к час. макс., к час. мин. определяются по формулам

Коэффициенты, учитывающие степень санитарно-технического оборудования зданий, режим работы предприятий и другие местные условия, принимаем 1,3 и 0,5 соответственно;

Коэффициенты, учитывающие количество жителей в населенном пункте, принимается по таблице 1 .

Система водоснабжения - это совокупность трубопроводов и устройств, которые обеспечивают бесперебойную подачу воды к различным санитарно-техническим приборам и другим устройствам, для работы которых она требуется. В свою очередь расчет водоснабжения - это комплекс мероприятий, в результате которого изначально определяется максимальный секундный, часовой и суточный расход воды. Причем, рассчитывается не только общий расход жидкости, но и расход холодной и горячей воды в отдельности. Остальные же параметры, описанные в СНиП 2.04.01-85* "Внутренний водопровод и канализация зданий" , а также диаметр трубопровода, находятся уже в зависимости от показателей расхода воды. Например, одним из таких параметров является диаметр условного прохода счетчика.

В настоящей статье представлен пример расчета водоснабжения на внутренний водопровод для частного 2-х этажного дома. В результате данного расчета найдены общий секундный расход воды и диаметры трубопроводов для сантехприборов, расположенных в ванной комнате, в туалете и на кухне. Также здесь определено минимальное сечение для входной трубы в дом. То есть имеется в виду труба, которая берет свое начало у источника водоснабжения и заканчивается в месте разветвления ее по потребителям.

Что касается других параметров, приведенных в упомянутом нормативном документе, то практика показывает, что их рассчитывать для частного дома не обязательно.

Пример расчета водоснабжения

Исходные данные

Количество проживающих людей в доме - 4 человека.

В доме имеются следующие санитарно-технические приборы.

Ванная комната:

Ванная со смесителем - 1 шт.

Сан. узел:

Унитаз со смывным бачком - 1 шт.

Кухня:

Умывальник со смесителем - 1 шт.

Расчет

Формула максимального секундного расхода воды:

q с = 5·q 0 tot ·α, л/с,

Где: q 0 tot - общий расход жидкости, одного потребляемого прибора, определяемый согласно п. 3.2 . Принимаем по прил. 2 для ванной комнаты - 0,25 л/с, сан. узла - 0,1 л/с, кухни - 0,12 л/с.

α - коэффициент, определяемый согласно прил. 4 в зависимости от вероятности Р и количества сантехприборов N.

Определение вероятности действия санитарно-технических приборов:

P = (U·q hr,u tot) / (q 0 tot ·N·3600) = (4·10,5) / (0,25·3·3600) = 0,0155 ,

Где: U = 4 чел. - количество водопотребителей.

q hr,u tot = 10,5 л - общая норма расхода воды в литрах, потребителем в час наибольшего водопотребления. Принимаем согласно прил. 3 для жилого дома квартирного типа с водопроводом, канализацией и ваннами с газовыми водонагревателями.

N = 3 шт. - количество сантехприборов.

Определение расхода воды для ванной комнаты:

α = 0,2035 - принимаем по табл. 2 прил. 4 в зависимости от NP = 1·0,0155 = 0,0155.

q с = 5·0,25·0,2035 = 0,254 л/с.

Определение расхода воды для сан. узла:

α = 0,2035 - ровно столько же, что и в предыдущем случае, так как количество приборов одинаково.

q с = 5·0,1·0,2035 = 0,102 л/с.

Определение расхода воды для кухни:

α = 0,2035 - как и в предыдущем случае.

q с = 5·0,12·0,2035 = 0,122 л/с.

Определение общего расхода воды на частный дом:

α = 0,267 - так как NP = 3·0,0155 = 0,0465.

q с = 5·0,25·0,267 = 0,334 л/с.

Формула определения диаметра водопровода на расчетном участке:

d = √((4·q с)/(π·V)) м,

Где: d - внутренний диаметр трубопровода на рассчитываемом участке, м.

V - скорость потока воды, м/с. Принимаем равной 2,5 м/с согласно п. 7.6 , в котором сказано, что скорость жидкости во внутреннем водопроводе не может превышать 3 м/с.

q c - расход жидкости на участке, м 3 /с.

Определение внутреннего сечения трубы для ванной комнаты:

d = √((4·0,000254)/(3,14·2,5)) = 0,0114 м = 11,4 мм.

Определение внутреннего сечения трубы для сан. узла :

d = √((4·0,000102)/(3,14·2,5)) = 0,0072 м = 7,2 мм.

Определение внутреннего сечения трубы для кухни:

d = √((4·0,000122)/(3,14·2,5)) = 0,0079 м = 7,9 мм.

Определение внутреннего сечения входной трубы в дом:

d = √((4·0,000334)/(3,14·2,5)) = 0,0131 м = 13,1 мм.

Вывод: для снабжения водой ванну со смесителем требуется труба с внутренним диаметром не менее 11,4 мм, унитаза в сан. узле - 7,2 мм, умывальника на кухне - 7,9 мм. Что касается входного диаметра водопровода в дом (для снабжения 3-х приборов), то он должен составлять не менее 13,1 мм.

Расчет минимальных расходов воды на неизученных реках или в случае, когда имеющийся фактический материал не пригоден для использования в расчетах по статистическим формулам, производится в основном двумя способами: по картам изолиний минимального стока и по эмпирическим зависимостям.

Карты изолиний используются при расчетах минимального 30-дневного стока средних рек, с площадью водосбора от 1000 – 2000 (критическая площадь) до 75 000 км 2 . Реки с площадью водосбора, меньшей критической, относятся к малым рекам.

Они имеют величину модуля минимального стока, отличную от аналогичной характеристики средних рек. Способ определения минимального стока на малых реках излагается ниже. Критическая площадь показывает величину площади бас­сейна, начиная с которой на реках данного района практически не наблюдается изменение модуля минимального 30-дневного стока (М 30) с ростом площади бассейна (F). Она определяется путем построения зависимости M 30 =f(F) на двуосной логарифмической клетчатке, на которой критической площади будет со ответствовать точка перегиба кривой при переходе ее в прямую, близкую к горизонтальной линии.

На территории России выделено 11 районов в зимний сезон и 14 районов в летне-осенний, в которых реки имеют близкие по размеру критические площади бассейнов. Их величина изменяется от 800 до 10 000 км 2 . Поэтому для ее определения в данном районе может быть использована карта районов (рис. 4.3., 4.4.) для определения минимальных 30-дневных расходов воды на малых реках и таблица наибольших (критических) площадей бассейнов малых рек (табл. 4.3).

Таблица 4.3.

Наибольшие критические площади бассейнов (км 2 ) малых рек

Индекс района по карте Летне-осенний сезон Зимний сезон Индекс района по карте Летне-осенний сезон Зимний сезон
А Д
Б Е
В Ж
Г

Способ определения минимального 30-дневного стока по картам изолиний аналогичен методу вычисления годового стока. Карты изолиний минимального стока не применяются для озерных рек и рек, расположенных в карстовых районах.

Минимальный 30-дневный сток на малых реках, с площадью водосбора не менее 50 км 2 , для увлажненных районов и 100 км 2 для районов недостаточного увлажнения, рассчитывается по эмпирической зависимости вида

где – минимальный 30-дневный расход воды, средний за многолетний период, для зимнего или летне-осеннего сезонов;

F – площадь бассейна реки в км 2 ;

а, n, с - параметры, определяемые в зависимости от географического местоположения реки, устанавливаются по таблице и картам районов для определения минимального 30-дневного стока на малых реках (табл. 4.4).

1 – граница и индекс района для определения наибольшего значения (критической) площади бассейна малой реки; 2 – граница и номер района для определения минимальных 30 – дневных расходов воды на малых рек; 3 – номер района и индекс подрайона для определения минимальных 30 – дневных расходов воды на малых реках; 4 – расчетные створы

Рис. 4.3. Выкопировки из карт районов для определения минимальных 30 – дневных расходов воды на малых реках в летне-осенний сезон.

1 – граница и номер района для определения коэффициента изменчивости; 2граница и номер района для определения минимального среднего суточного расхода воды;

Рис. 4.4. Выкопировка из карты районов для определения минимального среднего суточного расхода воды и коэффициента изменчивости 30-дневного стока в летне-осенний сезон.

Таблица 4.4.

Значения параметров а, n, с

Номер района по карте Зминий сезон Летне – осенний сезон
а 10 3 n с а 10 3 n с
2,50 1,08 1,40 1,27
1,60 1,05 0,94 1,24
1,00 1,14 0,64 1,22
0,012 1,30 0,0034 1,12 -500
0,72 0,74 -300 0,15 1,05 -200
0,24 0,90 -500 0,00013 1,93 -200
1,10 0,85 -1000 0,053 1,06 -500
0,87 0,84 -160 0,065 1,09

Для расчета минимальных 30-дневных расходов воды различной обеспеченности коэффициент изменчивости Сv определяется в зависимости от величины среднего многолетнего минимального 30-днсвного модуля стока за зимний или летне-осенний сезон для данного района. В качестве вспомогательного материала используется карта районов для определения коэффициентов изменчивости и таблица значений C v (табл. 4.5.). Коэффициент асимметрии принимается по аналогии с окружающими изученными реками или назначается по соотношению C S = 2C v для увлажненных районов и C s =1,0-1,5 C v для районов недостаточного увлажнения.

Таблица 4.5.

Значения C v в зависимости от величины модуля минимального 30- дневного стока за летний и зимний сезоны

Номер района по карте М зим. мес л/сек с 1 км 2 С v зим. мес М лет. мес л/сек с 1 км 2 С v лет. мес
0,5-3 0,3-0,2 3-12 0,5-0,3
0-1 0,4-0,3 4-7 0,6-0,3
__ 2-4 0,6-0,4
1,5-6 0,3-0,2 3-12 0,4-0,3
1-5 0,4-0,2 1-7 0,5-0,3
0,5-3 0,4-0,2 6-7 0,6-0,3
1-5 0,7-0,3 1-5 0,6-0,3

Минимальные расходы воды малых рек могут быть получены по зависимости минимального 30-дневного модуля стока обеспеченностью 97% от отметки тальвега русла реки в замыкающем створе, выраженной в абс. м. для районов с одинаковыми гидрогеологическими условиями питания реки.

Величина минимального среднего суточного стока устанавливается по его соотношению с минимальным 30-дневным модулем стока по зависимости

М сут = аМ мес - b, (4.2)

где М сут - минимальный средний суточный модуль стока в л/сек с 1 км 2 . М мес - минимальный 30-дневный модуль стока; а , b - параметры, определяемые в зависимости от местоположения реки (табл. 4.6.).

Таблица 4.6.

Значения параметров а и b для определения минимального среднего суточного модуля стока

Номер района по карте Зминий сезон Летне – осенний сезон
а b а b
0,94 0,1 0,82 0,4
0,86 0,1 0,74 0,1
0,80 0,3 0,83
0,70 0,4 0,72
0,70 0,2 0,42
0,75 0,1 0,47 0,1

Пример 4.3. Определить минимальные 30-дневные и средние суточные расходы воды 90%-ной обеспеченности в летне-осенний сезон р. Ура у ст. Ура-Губа (Кольский п-ов).

1. Устанавливаем, что площадь бассейна реки до замыкающего створа составляет 1020 км2.

2. Исходя из местоположения речного бассейна на карте (рис. 4.3), определяем индекс района и по табл. 4.6 устанавливаем величину площади бассейна, до которой река считается малой (критическую площадь). Величина критической площади для района А, в котором находится бассейн р. Ура, составляет 1400 км2. Следовательно, расчет необходимо производить по схеме, применяемой для определения минимального стока на малых реках.

3. По той же карте находим, что номер района для определения минимального стока малой реки. По табл. 4.4 определяем значения параметров расчетной формулы для района 1, которые равны а = 0,0014, n = 1,27, С=95. Подставив все расчетные параметры в формулу 4.1 получаем, что величина среднего многолетнего минимального 30-дневного расхода воды в летне-осенний сезон составляет 9,85 м3/сек, или 9,65 л/сек с 1 км2.

4. Для определения коэффициента изменчивости Cv по карте (рис. 4.4) устанавливаем, что бассейн р. Ура расположен в районе 1. По табл. 4.5 находим, что в районе 1 величине модуля 9,65 л/сек с 1 км2 соответствует значение коэффициента изменчивости Cv, равное 0,34 (величина Cv определена путем интерполяции с учетом того, что большему значению модуля соответствует меньшая величина Cv).

5. Величина коэффициента асимметрии Cs принимается в соответствии с рекомендацией для увлажненных районов равной 2 Cv

6. По установленным параметрам Q = 9,85 м3/сек, Cv = 0,34 и Cs =2 Cv определяем, что расчетное значение минимального 30-дневного расхода воды 90%-ной обеспеченности равно 5,3 мг/сек.

7. Для расчета минимального среднего суточного расхода воды по уравнению используется карта, показанная на рис. 4.4, по которой устанавливается, что р. Ура расположена в районе 1, для которого районные параметры а и b равны соответственно 0,82 и 0,4 (значения параметров определены по табл. 4.6). В качестве параметра Ммес подставляется величина М 90% ,равная 5,2 л/сек с 1 км 2 . В результате расчета получаем, что искомая величина минимального среднего суточного расхода воды (после перевода модуля в расход воды) 90%-ной обеспеченности составляет 3,94 м3/сек.

Пример 4.4. Определить минимальные 30-дневные и средние суточные расходы воды 75%-ной обеспеченности в летне-осенний сезон река на Кольском п-ове в зоне 3 (рис. 4.3). Устанавливаем, что площадь бассейна реки до замыкающего створа составляет 920 км 2 .

Пример 4.5. Определить минимальные 30-дневные и средние суточные расходы воды 25%-ной обеспеченности в летне-осенний сезон река на Кольском п-ове в зоне 2 (рис. 4.3). Устанавливаем, что площадь бассейна реки до замыкающего створа составляет 1020 км2.

Максимальные расходы воды

Под максимальными расходами воды рек и малых водотоков понимаются наибольшие в году значения мгновенных или срочных расходов, наблюдаемые во время весеннего половодья или дождевых паводков.

На малых водотоках со значительным внутрисуточным изменением уровней и расходов, особенно в период дождевых паводков, пик паводка может пройти между установленными сроками наблюдений. Поэтому срочные максимальные расходы бывают меньше мгновенных. В свою очередь средний суточный максимум меньше срочного. Эта разница бывает значительной на очень малых водотоках и уменьшается с возрастанием площади водосбора реки. Расчеты следует производить для мгновенных максимальных расходов воды.

По генетическому признаку, или происхождению, максимальные расходы воды подразделяются на:

а) образующиеся в основном от таяния снегов на равнинах,

б) от таяния снегов в горах и ледников,

в) от дождей,

г) от совместного действия снеготаяния и дождей – смешанные максимумы.

К максимумам смешанного происхождения относятся максимальные расходы воды, в образовании которых невозможно установить превалирующую роль талых или дождевых вод.

При анализе и расчетах максимальных расходов воды с применением методов математической статистики максимумы различного генетического происхождения рассматриваются раздельно.

Практическая важность вопроса определяется тем, что многие элементы половодья или паводков необходимо учитывать при строительстве гидротехнических сооружений. Особенно важно знать максимальные расходы воды весеннего половодья и дождевых паводков, от величины которых зависят размеры наиболее массовых сооружений – мостовых переходов через реки и малые водотоки, большое количество которых ежегодно строится на автомобильных и железных дорогах, а также размеры водосбросных и водопропускных отверстий других сооружений.

От правильного определения максимальных расходов воды и работы водосбросных отверстий зависит бесперебойность работы сооружения или дороги, безопасность пли судьба всего сооружения и прилегающих к реке объектов, а также, и стоимость сооружения. Завышенные максимальные расходы воды повысят общую стоимость сооружения, что снизит его экономическую эффективность. Занижение максимальных расходов приведет к разрушению сооружения, затоплению прилегающей к реке местности, материальному убытку и человеческим жертвам.

Расчетные ежегодные вероятности превышения, или обеспе­ченности, максимальных расходов воды определяются в зависимости от класса капитальности сооружения и нормируются общими техническими указаниями, рекомендуемыми или обязательными для проектных организаций.

Все гидротехнические сооружения по своей капитальности делятся на несколько классов. Сооружения высоких классов капитальности должны служить несколько сот лет. Чтобы они работали бесперебойно, их водосбросные отверстия нужно рассчитывать на пропуск максимальных расходов воды очень редкой повторяемости. Временные гидротехнические сооружения рассчитываются на максимальные расходы воды более частой повторяемости.

Строительными нормами и правилами [СНиП II–И 7–65] установлены следующие расчетные ежегодные вероятности превышения, или обеспеченности, максимальных расходов воды в зависимости от класса капитальности сооружения:

Класс сооружения ……..I II III IV

Р °/о……………………0,01 0,1 0,5 1

Временные гидротехнические сооружения V класса рассчитываются на пропуск максимальных расходов 10%-ной обеспеченности.

Постоянные водопропускные сооружения на автомобильных дорогах рассчитываются на максимальные расходы воды следующих обеспеченностей:

Бровка насыпи……………………………1,0 2,0

Отверстия мостов, труб…………………1,0 2,0

Ответвленные водоотводы………….....…2,0 4,0

Обвалование населенных пунктов,

вход в шахты, тоннели и пр.……………. 0,1 0,1

При этом если наблюденный максимальный расход имеет обеспеченность меньше 1%, то он принимается в качестве расчетного.

Технические условия проектирования железных дорог предусматривают расчеты отверстий мостов и труб на пропуск следующих расходов:

а) наибольшего обеспеченностью 0,33% для больших и средних мостов и 0,2% для малых мостов и труб;

б) расчетного обеспеченностью, указанной ниже:

Класс сооружения по степени капитальности I I и II II

Обеспеченность расхода, %............................1 (для труб 2) 1 (для труб2) 2

В зависимости от степени достаточности (длительности) ряда наблюдений и надежности исходных данных применяются следую­щие методы расчета максимальных расходов воды:

а) при наличии длительного ряда гидрометрических наблюдений строится эмпирическая кривая обеспеченности, и верхняя часть экстраполируется за пределы наблюдений до заданных обеспеченностей с помощью теоретической кривой обеспеченности;

Б) при наличии короткого ряда наблюдений, недостаточного для построения кривых обеспеченности, но достаточного для приведения его к длительному ряду, имеющийся короткий ряд приводится к длительному ряду и по последнему строятся кри­вые обеспеченности;

в) при наличии короткого ряда наблюдений, недостаточного для приведения его к длительному периоду, а также при отсутствии наблюдений по расчетному створу расчет производится косвенными методами – по методу аналогии или по формулам с обеспеченными параметрами.