Рабочий проект контур заземления промышленного здания. Заземление рабочее и защитное устройство. Внутренний контур заземления

Внутреннего и наружного электроснабжения, встаёт вопрос о монтаже контура заземления, так как дальнейшая безопасная эксплуатация электрооборудования напрямую зависит от качества электромонтажа очага заземления. Перед потребителем электроэнергии, коим является владелец электроустановки (собственник домовладения), встает выбор, какую же конструкцию заземления ему смонтировать на участке. Одни говорят вколотить уголки в землю, другие советуют закопать металлолом (вёдра, кастрюльки, утюги), третьи уговаривают выполнить электромонтаж модульного штыревого заземления . В этой статье мы постараемся рассказать о том, как не запутаться во всех этих советах и выбрать единственно приемлемое и верное решение.

Статьи цикла

  1. Электромонтаж ввода в деревянный дом кабелем ВВГнг в земле. Продолжение
  2. Электромонтаж внутренней открытой электропроводки в деревянном доме
  3. Электромонтаж внутренней скрытой электропроводки в деревянном доме. Продолжение
  4. Как выполнить разделение PEN-проводника в электроустановке (ВРУ, ГРЩ). Начало
  5. Как выполнить разделение PEN-проводника в электроустановке (ВРУ, ГРЩ). Продолжение

Контур заземления изготовленный из стальных уголков и обваренный стальной полосой

Традиционный контур заземления считается экономным вариантом (запрещён с 01.01.2013 на основании ГОСТ Р 50571.5.54-2011), так как не требует использования дорогостоящих материалов и выполняется обычно из стальных уголков размером 50 х 50 х 5 мм и стальной полосы 40 х 4 мм. Стальные уголки называются электродами (вертикальные заземлители), их забивают в землю вертикально в виде треугольника на расстоянии не менее 2,5 м друг от друга. Стальную полосу называют горизонтальным заземлителем.



Электроды (вертикальные заземлители) соединяют между собой стальной полосой 40 х 4 мм (горизонтальный заземлитель) при помощи сварки. Стальную полосу выводят на стену дома и устанавливают распаечную коробку, от которой прокладывают заземляющий проводник до главной заземляющей шины (ГЗШ) в вводно-распределительном устройстве (ВРУ). В качестве заземляющего проводника обычно применяют провод ПВ-1 сечением не менее 1О мм2 или неизолированный медный провод того же сечения. Для присоединения заземляющего проводника в горизонтальном заземлителе (стальная полоса) в распаечной коробке высверливают два отверстия и производят соединение при помощи болтов диаметром не менее 6 мм, то есть обеспечивают надёжное соединение в соответствии с ПУЭ.

После электромонтажа контура заземления проводится замер сопротивления заземляющих устройств . Если сопротивление заземляющего устройства не соответствует требуемым нормам, то необходимо установить дополнительно один или два электрода и присоединить их к конструкции контура заземления, после чего необходимо выполнить повторно электроизмерение .

Основные недостатки традиционного контура заземления:
1. Для установки конструкции требуется большая площадка рядом с домом.
2. Монтаж вертикальных заземлителей осуществляется при помощи бура и кувалды, что является очень трудоёмким процессом.
3. Конструкция заземлителей и соединений подвержены коррозии и их срок службы, в зависимости от типа грунта, составляет от 7 до 12 лет.

4. На основании ГОСТ Р 50571.5.54-2011, таблица 54.1, материал не обладает коррозионной стойкостью и запрещён к применению с 01.01.2013.

Более подробно о монтаже контура заземления можно прочитать в статье «Электромонтаж контура заземления «.

Контур заземления изготовленный из подручного металлолома

Теперь давайте рассмотрим монтаж контура заземления с использованием арматуры, кастрюлек и прочего металлолома. Обычно такой способ монтажа повторного заземления выбирают лентяи, лоботрясы и прочая нечисть с аула мастеров и электрик-хаус. Эти аферисты выкапывают небольшие ямки, сваливают в них металлолом, обвязывают его проволокой и закапывают, не забывая при этом вывести на стену дома кусок старой алюминиевой проволоки.


Для пущей убедительности они вбивают пару железяк в землю рядом с домом и весь этот хлам соединяют на скрутки, а заказчикам пудрят мозги, что это «холодная пайка». Более подробно об этих самодурах можно прочитать . Замеры сопротивления заземляющих устройств при этом способе монтажа не проводят в связи с тем, что они не знают как это делается и у них нет необходимого электроизмерительного оборудования. Проверку работоспособности контура заземления они выполняют обычной лампой накаливания, подключая один конец к фазе, а другой к конструкции из груды металлолома.


Если лампочка не загорается, то они поливают своё ноу-хау солевым раствором.

Основные недостатки:
Данная конструкция не имеет право на существование!

Статьи цикла «Вся правда о электромонтажных работах в деревянном доме»:

  1. Электромонтаж ввода в деревянный дом кабелем ВВГнг в земле
  2. Электромонтаж ввода в деревянный дом кабелем ВВГнг в земле. Продолжение

Благодаря развитию технологий многомощные электрические приборы заполонили наши дома. Уже тяжело представить себе жизнь без холодильника, стиральной машины, микроволновой печи, индукционной плиты – ведь все это мы используем каждый день. Не стоит забывать, что электрические приборы представляют опасность для нас в случае нарушения их изоляции. Поэтому необходимо обязательно обустроить контур заземления для всего дома, обезопасив тем самым себя и приборы от пробоя на корпус.

Изъясняясь сухим техничным языком, заземление подразумевает электрическое соединение с землей (грунтом) нетоковедущих частей электроустановок, выполненное преднамеренно. При этом данные части электроприборов не находятся под напряжением в нормальном состоянии, но могут оказаться под ним. Причиной может стать нарушение изоляции в том числе.

Чтобы объяснить более простым доступным языком, придется вспомнить школьный курс физики. Как мы помним, ток имеет свойство течь в сторону наименьшего сопротивления. Если изоляция токоведущих частей приборов нарушена, ток будет искать место, в котором сопротивление самое низкое. Так происходит пробой на корпус электроприбора. Другими словами металлический корпус будет находиться под напряжением. Помимо того, что это может нарушить работу самого прибора или даже поломать его, если в данный момент человек дотронется к поверхности корпуса, он получит удар током.

Контур заземления необходим для того, чтобы ток распределился между человеком и заземляющим устройством обратно пропорционально их сопротивлениям. Учитывая, что сопротивление тела человека во много раз будет превышать сопротивление заземляющего контура, через него пройдет предельно допустимый ток, а остальной уйдет в землю. Мы подошли к очень важному моменту: выполняя контур заземления своими руками, необходимо сделать его таким, чтобы его сопротивление было минимально допустимым.

Контур заземления выполняется с помощью стальных стержней, забиваемых на глубину, и планок, содиняющих их

Чаще всего заземление выполняется с помощью металлических стержней – электродов, заглубленных в грунт и соединенных между собой вверху полосой или прутом. Данная конструкция соединяется с придомовым щитком кабелем или такой же металлической полосой.

При этом глубина расположения электродов зависит от насыщенности грунта водой. Чем выше находятся грунтовые воды, тем меньше потребуется глубина.

Расстояние от дома должно составлять не менее 1 м, но не более 10 м.


Минимальные допустимые размеры арматуры, применяемые для монтажа заземляющих устройств

Контур заземления частного дома выполняется с помощью стержней, в качестве которых могут выступать стальной уголок, арматура с гладкой структурой, труба, двутавр. Площадь сечения электродов должна быть больше 1,5 см 2 , а форма должна быть удобной для забивания в землю.

Стержни располагаются в ряд или в виде геометрической фигуры: треугольник, квадрат, прямоугольник. Это зависит от удобства монтажа конструкции и площади, которую можно использовать. Также возможен вариант оборудования контура по периметру здания. Но самым распространенным по-прежнему остается треугольный контур заземления. В вершинах фигуры вбиты электроды, которые соединены между собой стальной полосой.

Важно! Контур заземления должен располагаться обязательно ниже промерзания грунта.

Другими словами, заземление можно сделать, используя подручный материал. Но есть возможность приобрести готовый комплект для обустройства контура заземления. В него входят стержни – электроды из омедненной стали, длиной 1 м, соединяются резьбовым соединением. Такие комплекты стоят недешево, но значительно облегчают задачу и долговечны в использовании.

Как сделать расчет

Безусловно, заземление можно выполнить опытным путем. Например, определить глубину залегания воды, отступить от дома на оптимальное расстояние и обустроить треугольный контур. Сварить электроды между собой и измерить сопротивление получившейся конструкции. Если оно окажется слишком большим, заглубить еще дополнительные электроды, присоединить их к предыдущим и снова произвести замеры. И так пока результат измерений не будет соответствовать требованиям.

Специалисты же настоятельно рекомендуют перед тем, как сделать контур заземления, произвести все необходимые расчеты. Определить число вертикальных заземлителей – электродов, которое понадобится, и длину соединительной полосы в зависимости от сопротивления грунта.

Для начала потребуется определить сопротивление одного вертикального заземлителя – электрода.


Формула 1. Сопротивление одного вертикального заземлителя

R 0 сопротивление одного электрода, Ом;

ρ экв – эквивалентное удельное сопротивление грунта, Ом*м;

L – длина электрода, м;

d – диаметр электрода, мм;

T – расстояние от середины электрода до поверхности земли, м.


Таблица 1. Удельное сопротивление грунта


Таблица 2. Значение сезонного климатического коэффициента сопротивления грунта

Значение сопротивления грунта можно брать из таблицы, но если грунт неоднородный, тогда


Формула 2. Эквивалетное удельное сопротивление неоднородного грунта

Ψ – сезонный климатический коэффициент;

ρ 1 , ρ 2 – удельное сопротивлении грунта (1 – верхнего слоя, 2 – нижнего слоя), Ом*м;

H – толщина верхнего слоя грунта, м;

t – глубина, на которую забивается электрод, м (глубина траншеи);

Если не учитывать сопротивление горизонтального заземлителя, то количество электродов можно найти по формуле:

Формула 3. Количество электродов без учета сопротивления горизонтального заземлителя

n 0 – количество электродов;

R н – нормируемое сопротивление заземления, исходя из ПТЭЭП.


Таблица 3. Наибольшее допустимое значение сопротивления заземляющих устройств (ПТЭЭП)

Определяем сопротивление тока горизонтального заземлителя по формуле:


Формула 4. Сопротивление тока растекания горизонтального заземлителя

L Г – длина заземлителя;

b – ширина заземлителя;

ψ – коэффициент сезонности горизонтального заземлителя;

ɳ Г – коэффициент спроса горизонтальных заземлителей.

Длина заземлителя находится так:


Формула 5. Длина горизонтального заземлителя

a — расстояние между электродами.


Формула 6. Сопротивление вертикальных заземлителей — электродов с учетом сопротивления горизонтального заземлителя

Итоговое количество вертикальных заземлителей – электродов равно:

Формула 7. Окончательное количество вертикальных заземлителей

ɳ в – коэффициент спроса вертикальных заземлителей.


Таблица 4. Коэффициент использования заземлителей

Показатель под названием «коэффициент использования» показывает влияние друг на друга токов в зависимости от расположения вертикальных электродов. Если электроды соединены параллельно, то токи, протекающие по ним, влияют друг на друга. Чем меньше расстояние между электродами, тем общее сопротивление контура больше.

Если число заземлителей, полученное по последней формуле, оказывается не целым, округляем его до целого в большую сторону.

Контур заземления: схема

После того, как все расчеты произведены, выбираем удобное место для расположения контура заземления. Определяемся, какой фигурой будут располагаться электроды. Затем рисуем схему контура заземления с учетом типа используемых материалов. Обязательно указываем, что использовали для электродов и для соединительной полосы, их длину и диаметр, глубину расположения.


Контур заземления: схема на паспорте (снаружи здания) — пример

Контур заземления: схема на паспорте (внутри здания) — пример

Все это нам пригодится не только для удобства монтажа и на будущее, но и для того, чтобы получить паспорт контура заземления. Когда монтажные работы будут завершены и сопротивление контура измерено, сотрудники энергоуправления, которых необходимо будет пригласить, выдадут и завизируют всю необходимую документацию на контур заземления. Конечно, это в том случае, если все сделано верно.

Сооружение контура заземления

Монтаж контура заземления лучше начинать в теплое время года. Так будет легче производить земляные работы и измерить сопротивление заземления. Тогда же будет более достоверно видно, на какой глубине залегают грунтовые воды.

Рассмотрим вариант обустройства контура заземления в виде треугольника:


Для обустройства контура заземления необходимо вырыть траншею на глубину промерзания грунта

  1. Место мы уже выбрали. Поэтому копаем траншею глубиной от 0,7 м до 1 м (ниже промерзания грунта), шириной 0,5 – 0,7 м. Линии должны образовывать треугольник со стороной, длина которой была определена в ходе расчетов.
  2. От одного из углов треугольника копаем траншею в сторону силового щитка.
  3. В вершинах треугольника вбиваем заземлители – электроды. Что именно будем для этого использовать, необходимо решить на этапе расчетов. Пусть в качестве примера это будет стальной уголок 50*50 мм. Если плотность грунта не позволяет просто забить стержни, придется бурить скважины.
  4. Заглубляем стержни так, чтобы они выступали над уровнем грунта. Если нам все же пришлось бурить скважины, устанавливаем в них уголки и засыпаем грунтом, перемешанным с солью.
  5. Берем стальную полосу 40*5 мм и привариваем к электродам, образуя контур в виде треугольника. Затем от одного из них ведем полосу до силового шкафа.
  6. Полосу закрепляем к проводу заземления или силовому щитку с помощью болта диаметром 10 мм. При этом болт обязательно привариваем к полосе.
  7. На этом этапе проверяем сопротивление контура заземления Омметром. Прибор этот недешевый, покупать его нет смысла. Лучше пригласить сотрудников из энергоуправления, чтобы они сняли замеры и заполнили паспорт контура заземления. Показатель сопротивления должен быть меньше требуемого. Если нет, тогда необходимо вбивать дополнительные электроды.
  8. Если сопротивление оказалось достаточным, засыпаем траншею однородным грунтом без строительного мусора и щебня.

Важно! Во время дальнейшей эксплуатации в аномально засушливую погоду контур заземления желательно поливать со шланга водой, чтобы снизить его сопротивление.

Все работы, связанные с расчетами и монтажом контура заземления, можно доверить профессионалам, у которых больше опыта. Это поможет сэкономить время и нервы. Но если Вы склонны все делать своими руками, дерзайте. Ваше творение будет служить защитой Вам и Вашей семье.

Если в оборудовании повреждена изоляция, то части, которые не должны проводить электрический ток, могут оказаться под действием напряжения. Прикасаясь по привычке к ручкам, кожуху или корпусу, пользователь получает удар током, и становится проводником его в землю. Сила тока в 0,1 А смертельно опасна для человека. Так как сопротивление тела колеблется в пределах от сотен до тысяч Ом, то приборы с маленьким напряжением становятся угрозой.

Действенной мерой защиты от электрических травм является заземление. Это устройство представляет собой продуманное соединение одной из частей установки с землей , которое делается с помощью элементов и проводников заземления. Они собираются в группы и закладываются в грунт. Основным правилом защитных устройств является то, что сопротивление заземления во много раз меньше этого показателя человеческого тела.

Чтобы определить максимально возможное сопротивление защитного заземления нужно просуммировать напряжение техники и замыкающих земельных токов. Кроме того, следует определиться с наличием изолированного или заземленного нейтрального проводника и другими важными технологическими особенностями, которые установлены в правилах ПУЭ.

Схема заземляющего устройства состоит из наружных естественных или искусственных элементов, проложенных в земле и собранных в общий контур. В устройство защиты входят и внутренние сети проводников на стенах, которые присоединяются к наружному контуру.

Элементы из металла, проложенные в земле, обеспечивают большую площадь соприкосновения с грунтом и имеют малое сопротивление. В качестве наружных элементов широко используют находящиеся в земле металлические трубчатые магистрали. Не подключают к заземлению трубопроводы взрывчатых и легковоспламеняющихся веществ.

Детали обсадных труб, металлического каркаса в железобетонных конструкциях домов, нулевые провода воздушной электропроводки с напряжением 1000 В с повторным заземлением успешно применяют в качестве элементов наружной защиты. Все случайные металлические элементы обязательно подсоединяются в двух местах к защитному контуру.

Все узлы соединяются сваркой, длина шва определяется в зависимости от сечения проводника. Если невозможно сварить детали, тогда применяют хомуты со стороны места входа магистрали в строение. Сварочные соединения обрабатывают битумом для защиты от преждевременной коррозии.

Обязательно заземляют:

Не защищают заземлением:

  • конструкции опорных изоляторов проводки;
  • приборы, помещенные на заземленных платформах, так как на них предусматривается необработанное место для контакта с плоскостью;
  • корпуса приборов измерения и контроля, которые стоят в наборных щитках или шкафах.

Если нет подходящих естественных элементов заземления, контур наружной защиты выполняют из искусственно подобранных в соответствии с ПУЭ . По типу они бывают горизонтальными, заглубленными и вертикальными.

Горизонтальными элементами служат полосы стали толщиной более 4 мм и шириной не менее 10 мм, которые прокладываются в горизонтальном направлении в земле и связывают вертикальные стержни.

Горизонтальные и заглубленные варианты являются родственными по конструкции, они закладываются на дно ямы при установке опор электропередач . Заземление изготавливается по проекту монтажной организацией в мастерских. Материалом служит стальная полоса или круглая арматура.

Вертикальное заземление представляет собой забитые в грунт трубы или металлический прокат и стальную арматуру.

Монтаж контура наружного заземления выполняется по специальным схемам и в соответствии с ПУЭ . Все подготовительные работы в виде пробивки отверстий, установке закладных деталей, рытье траншей, осуществляется на первом этапе работ.

От чего зависит величина сопротивления заземления:

  • разновидности грунта на участке, его структуры и состояния;
  • глубины прокладки электродов;
  • свойств материалов и сечения электродов.

Свойства грунта определяются его способностью сопротивляться растеканию электрического тока в толще земли. Для контура считается лучше, если этот показатель меньше.

Заземление рабочее и защитное устройство

Защитное устройство спасает человека от удара электричеством, а включенные в сеть бытовые приборы от поломки при пробое напряжения на корпус. Рабочее заземляющее устройство организовывает защиту и нормальное функционирование электрических приборов. Рабочее заземление постоянного действия применяется только для промысленного электрического оборудования, а бытовые приборы заземляются через ноль розетки. Но некоторые бытовые агрегаты следует наглухо защитить заземлением:

  1. стиральная машина с большой собственной электроемкостью, работающая во влажных условиях, пробивает на корпус и «щиплет» руку;
  2. на микроволновых печах сзади стоит специальная клемма для дополнительного заземления, так как в ней установлен источник сверхвысоких частот. Если в розетке недостаточный контакт, то прибор может выдавать неучтенные волны на опасном для здоровья уровне;
  3. варочные поверхности электрической духовки и индукционной печи, в которых внутренняя проводка работает при критических состояниях и ток иногда пробивает на корпус;
  4. настольный компьютер стационарного вида утечку электричества дает большую. Корпусные плавающие потенциалы приводят к замедлению работы и снижению производительности, и заземление крепят за любой подходящий винт на задней панели.

В некоторых случаях нельзя рассчитывать только на одно заземление, так как грунт не относится к линейным проводникам электричества. Его сопротивление определяется рабочим напряжением и площади контакта с элементом контура. Если разнести два контура на расстояние друг от друга на 1,2– 1,5 метра , то площадь соприкосновения эффективно увеличивается в сто раз. Нельзя увеличивать расстояние разноса больше указанного размера, это повлечет разрыв потенциального поля, и площадь сразу сокращается.

Нельзя заземляющие проводники выводить в наружное пространство и подключать их к неподготовленным площадкам контакта. Любой металл обладает своим потенциалом и при влажных наружных условиях начинается коррозия и разрушение. Наличие смазки на контакте помогает только в сухих условиях . Если коррозия пойдет под оболочку проводника, то в критической ситуации проводник моментально отгорит и контур не защитит человека от поражения.

Если электрические установки подключать в последовательном порядке и подсоединять не один заземляющий проводник на шину, а несколько, то авария на одном приборе потянет за собой и остальные. Они не смогут работать производительно, так как будут несовместимы в электромагнитном плане.

Для устройства контура идеально подходят влажные глины, суглинки и торфяные грунты. Практически невозможно установить защитную конструкцию в каменистой земле и скальных породах.

Работы по изготовлению и монтажу контура

Если в доме и на участке нет заземления, устраивают такую конструкцию на вводе в жилище, что является повторным заземлением. Чаще всего подключение электричества от городской линии электропередач в дом идет по воздуху, и устройство вторичного заземления требуется по правилам ПУЭ.

На первом этапе выбирают месторасположения, размеры и форма контура. Устанавливают его недалеко от ввода, а по форме контур бывает треугольный, прямоугольный или в виде линии, который состоит из любого числа вертикальных штырей, собранных стальной полосой.

На чем заострить внимание:

Земляные подготовительные работы

Для разметки устанавливают колышки с натянутой бечевкой и разметку выполняют штыком лопаты. Землю по разметке выкапывают на глубину траншеи по ширине 30 см. Для нижнего слоя подсыпают мягкий грунт слоем 25 см в виде чернозема без мусора и каменных добавлений, который непосредственно будет контактировать с элементами заземления. Иногда используют привозной грунт с добавлением торфа или перегноя. Во время обратной засыпки после устройства контура грунт периодически послойно уплотняют.

Устройство контура

В углах траншеи забивают вертикальные штыри, которые предварительно оставляют над уровнем земли на 30 см, что нужно для удобства выполнения сварочных работ. После этого приваривают горизонтальные полосы с запасом длины на концах. Полосовую сталь нельзя натягивать, она должна располагаться свободно.

К выполнению сварки предъявляются особые требования. Все длины швов регламентированы в нормативных справочниках в зависимости от различного сочетания полос, кругляка и квадрата между собой. Обычно для однотипного профиля длина шва принимается 100 мм, а разнотипные элементы привариваются с созданием наибольшей площади соприкосновения и обваривают все места соединения.

После окончания сварочного соединения все места сварки окрашивают краской или обмазывают битумом. Для вертикальных стержней контура и горизонтальных элементов не допускается наличие краски на протяжении всей поверхности.

Далее равномерно забивают всю сваренную конструкцию в грунт (осаживают). Для облегчения места входа в землю поливают водой . Ударные нагрузки на места сварки проверяют неоднократно прочность конструкции. Предварительное затачивание концов вертикальных швов болгаркой или точильным кругом очень облегчит забивание.

Для подключения контура к вводу и к распределительному ящику используют полосу металла, которую жестко фиксируют на указанных конструкциях.

Как измерить заземление

После изготовления контура удостоверяются в его надежности, для чего измеряют сопротивление растеканию электрического тока в земле и сопротивление сваренного металлического контура. Для этого в настоящее время существуют разнообразные электронные приборы. Пользуются и старыми советскими надежными устройствами. Бытовой тестер для этого подойдет мало, так как земля не является линейным проводником тока.

Беру напрокат или одалживают электронный современный прибор или старый советский ручной мегомметр индукционного способа действия. Проверить сопротивление контура не удастся ручным прибором , но при тщательно и правильно выполненном сварном соединении оно десятилетиями находится в норме.

Сопротивление растекания проверяют голыми зачищенными электродами, которые погружают в землю на глубину до одного метра на расстоянии полутора метров друг от друга. При этом выдерживают полярность меггера, контур защиты должен выдерживать молниевый удар. Но разрушительная сила такого природного катастрофического явления приравнивается к взрыву и заземление от него может не спасти.

Поэтому для измерения сопротивления текучести крутят ручку меггера и определяют показания на шкале. Пользоваться в этом случае сетевым напряжением, миллиамперметром и резистором очень опасно.

Собственник дома, самостоятельно выполнивший устройство заземления, не может полноценно оценить его качество просто визуальным осмотром и иногда требуется пригласить специалиста, владеющего профессиональными приемами и знаниями. Это может быть работник электротехнической службы любого крупного предприятия.

Все нормативные документы предъявляют требования по омическому сопротивлению в зависимости от многочисленных факторов. Ими учитываются эксплуатационные условия, климат, действующие напряжения электрических приборов, особенности электроснабжения и схема подключения. И в зависимости от этого формируется максимально допустимый предел сопротивления почвы текучести тока, который варьируется в очень большом диапазоне.

Исходя из опытных замеров, в соответствии с нормативными схемами, допустимый показатель для частного дома составляет 4 Ома. Это вполне реальная цифра, которая поможет защитить человека от поражения током. Уменьшение показателя будет более благоприятно для повышения эффективности защиты электроприборов в жилище.

Для передачи электроэнергии на большие расстояния используют высокое напряжение. Как правило, к потребителю приходит линия 6 (10)кВ и для снижения напряжения до 0,4кВ проектируют трансформаторные подстанции. Сейчас хочу рассмотреть заземление и молниезащиту такой ТП.

В данной теме можно выделить внешний и внутренние контуры заземления, а также мероприятия по молниезащите трансформаторной подстанции.

1 Внешний контур заземления.

В общем случае внешний контур заземления для трансформаторной подстанции состоит из замкнутого контура, представляющим собой горизонтальный заземлитель и n-го количества вертикальных электродов. В качестве горизонтального электрода применяют полосовую сталь 4×40мм.

Общее сопротивление заземляющего контура должно быть не более 4Ом при удельном сопротивлении грунта не более 100Ом*м. При удельном сопротивлении грунта более 100Ом*м допускается увеличивать данное значение в 0,01·? раз, но не более чем в 10 раз (ПУЭ7 п. 1.7.101). Получается, чтобы получить нужное значение (4Ом) с удельным сопротивлением грунта 100Ом*м необходимо забить около 8 вертикальных электродов длиной 5 м из круга диаметром 16мм либо 10 вертикальных электродов длиной 3м из стального уголка 50×50х5мм.


Располагать наружный заземляющий контур следует на расстоянии не более 1м от стены ТП либо фундаментной плиты, на которой установлена трансформаторная подстанция.

Горизонтальный заземлитель из стальной полосы укладывается в траншее на глубине 0,7 м. Полоса укладывается на ребро.

2 Молниезащита трансформаторной подстанции.

Ниже представлен разрез ТП.



В случае с металлической кровлей молниезащиту трансформаторной подстанции выполняют следующим образом: с диаметрально противоположных сторон выполняют связь кровли с наружным контуром заземления, т.е. в местах ввода стальной полосы в здание ТП. На разрезе вторая связь кровли с заземлителем не показана. В качестве проводника следует применять проволоку диаметром 8мм. В других случаях необходимо запроектировать молниеприемник на кровле здания ТП.

Проложенная полоса зземления по наружной стене здания должна быть защищена от механических повреждеий и коррозии согласно ПУЭ7 п. 1.7.130.

3 Внутренний контур заземления.

Обычно трансформаторная подстанция состоит из трех помещений: распределительное устройство 6 (10)кВ, распределительное устройство 0,4кВ и камера трансформатора. Иногда РУ объединяют в одно общее помещение.

В каждом помещении по периметру прокладывают полосу заземления, т.к. все металлические части не находящиеся под напряжением должны быть заземлены, а это обрамление каналов, люки подполья, крепежные элементы барьеров, шинный мост, возможность присоединения переносных заземлений.

Крепят полосу к стене на отметке 0,4м от уровня пола при помощи дюбель-держателей либо специальных держателей К-188 через расстояние 0,6-1,0м. Все разборные соединения, предусмотренные изготовителем оборудования, присоединяют болтовым соединением, остальные соединения выполняют при помощи сварки. Для переносного заземления используют «гайку-барашек». Гибкие заземляющие перемычки выполняют проводом ПВ3, но без изоляции. Это делается для видимой целостности соединения.

Прокладка заземляющих и нулевых защитных проводников через стены и и перекрытия должна выполняться, как правило, с их непосредственной заделкой. Для этих целей используют гильзы. Пространство в гильзах заделывают специальным негорючим легкоудаляемым составом. После прокладки полосу красят в желто-зеленый цвет в соответствии с рисунком.

В помещении трансформатора земление выполняют в соответствии с рисунком, представленном ниже.


Обозначения:

1 Швеллер в стяжке пола для установки силового трансформатора.

2 Съемный оградительный барьер.

3 Предупреждающие знаки на барьере.

5 Шина заземления для силового трансформатора.

6 Проем в стене для шин 0,4 кВ.

7 Узел крепления шин 0,4 кВ.

8 Заземление створок ворот перемычкой.

9 Вентиляционная решетка в створках ворот.

10 Маслоудерживающий борт.

11 Розетка.

12 Выключатель освещения камеры.

13 Светильник освещения.

14 Сети освещения 220 В.

Узел А – точка присоединения переносного заземления. К шине заземления с помощью сварки присоединяют болт М8, комплектуют его двумя широкими шайбами М8 и «гайкой-барашек» М8.

Узел В – точка соединения шин заземления. До крепления на место установки шины, ее окончание, которое будет присоединяться с помощью сварки, подготавливают в виде «утки».

Узел С – точка соединения шины заземления к металлическим конструкциям. До крепления на место установки шины, ее окончание, которое будет присоединяться с помощью сварки, подготавливают в виде «утки» с учетом размера А металлоконструкции.

Для безопасного осмотра силового трансформатора при эксплуатации предусматривается оградительный барьер, который окрашивают в красный цвет. На барьере размещают запрещающие плакаты. Барьер устанавливается на высоте 1,2м от уровня пола и на расстоянии 0,5м от двери.

В основном все наши сети с глухозаземленной нейтралью, поэтому нам необходимо присоединить нулевую шину трансформатора к нашему заземляющему контуру. Металлический корпус силового трансформатора присоединяется к контуру заземления при помощи гибкой перемычки.

На рисунке показано заземление силового трансформатора, где:

1 Гибкая заземляющая перемычка.

2 Шина заземления.

3 Шина зануления трансформатора.

4 Ошиновка 0,4кВ трансформатора.

5 Болт заземления трансформатора.

В технических подпольях внутренний контур заземления выполняют в соответствии с рисунком.

Обозначения на изображении:

1 Люк через перекрытие в техническое подполье.

2 Лестница.

3 Гильзовый переход через перекрытие для шины заземления.

4 Шина заземления внутреннего контура ТП.

5 Кабельная стойка с полками.

6 Гильзовый переход через перекрытие для кабелей.

8 Силовой кабель электроснабжения.

К.В. Шубаков. Монтаж типовых, городских трансформаторных подстанций.