Допустимый ток в нулевом проводнике. Нарушения в нулевом проводе

Понятие «отгорание нуля» появилось в электротехническом лексиконе в результате частого выгорания так называемого «нулевого проводника», который в промышленных трехфазных сетях переменного тока используется в качестве рабочего проводника и по нему протекает ток.
В случае квартирной однофазной цепи «нулевым проводом» считается проводник, имеющий нулевой потенциал по отношению к земле. Второй проводник в этом случае называют «фазным»; он имеет по отношению к земле более высокий потенциал, равный 220 вольт, и никаких проблем при этом с отгоранием нуля не возникает.

Отгорание нуля возможно лишь в трёхфазных сетях переменного тока и только при появлении разбаланса нагрузок в каждой из фаз питающей электросети. Само же понятие «нулевой провод» применимо лишь к схеме соединения трёхфазных источников тока и нагрузок по схеме «звезда», поэтому и анализировать имеет смысл только эту схему. Хорошо известно также, что переменные токи в каждой из фазных линий (в случае одинаковых нагрузок) сдвинуты по фазе на одну треть периода, в результате чего векторная сумма обратных токов в нейтральном (нулевом) проводнике равна нулю.

Поскольку через нулевой провод в этом случае электрический ток не протекает, то практически можно обходиться и без него. Небольшие токи появляются в нулевом проводнике лишь в том случае, когда нагрузки в различных фазах начинают различаться и перестают компенсировать друг друга. Именно поэтому большинство трёхфазных четырёхжильных проводов имеют нулевая жилу вдвое меньшего сечения, поскольку нет смысла тратить довольно дорогую медь на проводник, по которому ток всё равно не протекает. Проблемы в трёхфазной электрической сети начинают появляться тогда, когда в них в качестве однофазных нагрузок включаются приборы, имеющие различные величины сопротивлений.

Любые попытки каким-то образом получить равномерно распределённые по мощности однофазные нагрузки в этом случае не дают положительного результата. Вызвано это тем, что потребитель совершенно случайным образом подключает свои бытовые электроприборы, постоянно меняя, таким образом, величину нагрузки на каждой отдельной фазе. При этом протекающий по нулевому проводу ток не превышает, как правило, критической величины, и рассчитанная на определённые токи проводка выдерживает их без особых последствий.

Но совершенно иная картина стала наблюдаться в последние годы, когда широкое распространение получили импульсные источники питания, устанавливаемые сегодня практически во всю современную домашнюю технику (компьютеры, телевизоры, DVD-проигрыватели и т. п.).

Токи нагрузки в цепях новых источников питания протекают только в течение определённого периода времени, и характер их потребления существенно отличается от режима потребления обычных приборов. Как следствие этого - в трёхфазной цепи возникают дополнительные токи, и, с учётом несогласованности нагрузок, по нулевому проводу может начать протекать ток, равный или даже больший, чем максимальный ток фазы. Всё это способствует возникновению условий, при которых может произойти опасное для электросети «отгорание нуля».

Связано это с тем, что все проводники (в том числе - и нулевой), работающие в составе трёхфазных проводных линий, имеют одно и то же сечение, выбираемое из расчёта максимального тока, протекающего в нагрузке. В особо неблагоприятных условиях (описанных выше) через нулевой проводник начинает протекать ток, значительно превышающий допустимые значения. В этом случае вероятность его отгорания резко возрастает.

Подобную ситуацию, вызывающую значительный «перекос фаз» и повышающую вероятность «отгорания нуля», обязательно нужно учитывать при подготовке рабочего проекта вашей домашней электросети.

Cтраница 1


Ток нулевого провода, равный геометрической сумме токов трех фаз, при равномерной нагрузке равен нулю. Следовательно, в нулевом проводе ток протекать не будет и надобность в нем отпадает. Так, например, трехфазные двигатели переменного тока включаются в сеть звездой без нулевого провода.  

Так как ток нулевого провода равен сумме линейных токов, то при одинаковой нагрузке фаз суммы токов прямой и обратной систем будут равны нулю и в нулевом проводе будут только токи нулевых систем.  


Разновидностью проверки является определение тока нулевого провода в схеме полной звезды. Теоретически при симметричной трехфазной нагрузке ток в нулевом проводе должен быть равен нулю. Практически за счет несимметрии первичных токов, несимметрии вторичной нагрузки и неидентичности, характеристик ТТ ток в нулевом проводе обычно не равен нулю.  


Как видно из векторной диаграммы, при неполнофазном режиме ток ID нулевого провода может быть достаточно большим. Это приходится учитывать в условиях эксплуатации, так как заземление нулевой точки обычно не рассчитывается на длительное протекание больших токов.  


Если для кабелей с медными жилами сечением 35 ми и более ток нулевого провода составляет более 50 % фазного тока, то сечение гибкого медного провода (перемычки) принимается на одну ступень больше.  

К задаче 5 - 1.  

Обрыв нулевого провода не влияет на работу цепи, так как ток нулевого провода равен нулю.  

На одну из первичных обмоток с числом витков w подается фазный ток, а на другую с числом витков / з w i - ток нулевого провода. Наличие второй первичной обмотки с числом витков 11 / з w i необходимо для компенсации токов нулевой последовательности.  

В симметричных трехфазных системах ток нулевого провода равен нулю. На практике при неидеальной симметрии ток нулевого провода хотя и отличен от нуля, но остается значительно меньше токов фаз. Поэтому возможность выбора меньшего сечения нулевого провода в сравнении с сечением фазных проводов приводит к более эффективному использованию токопроводящих материалов в трехфазных системах.  

В схеме дифференциальной защиты (рис. 13.10, в) применен один трансформатор тока нулевой последовательности TAZ. Ток в реле КА пропорционален разности магнитного потока, создаваемого токами фазных проводов, и потока, создаваемого током нулевого провода. При внешних коротких замыканиях на землю эта разность близка к нулю и ток в реле недостаточен для срабатывания защиты. В случае повреждения на землю в зоне действия защиты магнитные потоки суммируются, ток в реле превышает ток срабатывания и защита отключает генератор.  

В схеме дифференциальной защиты, показанной на рис. 12.2, в, применен один трансформатор тока нулевой последовательности TAZ. Ток в реле КА пропорционален разности магнитного потока, создаваемого токами фазных проводов, и потока, создаваемого током нулевого провода. При внешних коротких замыканиях на землю эта разность близка к нулю и ток в реле недостаточен для срабатьшания защиты. В случае повреждения на землю в зоне действия защиты магнитные потоки суммируются, ток в реле превышает ток срабатьшания и защита отключает генератор.  

Пусть фазы генератора и фазы нагрузки соединены звездой с нулевым проводом, а трёхфазная система напряжений на обмотках генератора симметрична. Если сопротивление нулевого провода равно нулю, то при любой неравномерной нагрузке фаз все три фазных напряжения на нагрузочном конце линии будут одинаковыми и равны фазному напряжению U ф на генераторном конце линии. Токи в фазах нагрузки будут определяться её импедансами Z 1 , Z 2 , Z 3 .

Допустим теперь, что в нулевом проводе случилось какое-то нарушение. Под термином «нарушение» будем понимать либо появление у нулевого провода заметного сопротивления (вследствие, например, плохих контактов или большой его длины при малом сечении), либо его обрыв (Z N =∞). Посмотрим, как при этом изменится режим на нагрузочном конце линии. Если нагрузка симметрична, то никак, поскольку тока в нулевом проводе при этом всё равно не было бы. Таким образом, представляет интерес вариант, когда

Обозначения токов, напряжений и импедансов в цепи в этом случае показаны на рис. 10, а (фазные напряжения отмечены только для фазы 1). Если − симметричная система напряжений на фазах генератора, то напряжения на фазах нагрузки теперь уже будут, вообще говоря, отличны от них, так как в нулевом проводе появится ток İ N , а значит и некоторое падение напряжения . В результате потенциал точки n на нагрузочном конце линии будет отличным от потенциала точки N , который принимается за ноль, на величину U n . Выразим U n через через заданные фазные напряжения и импедансы цепи.


По первому правилу Кирхгофа,

Из второго правила Кирхгофа находим:

(2)

Следовательно

Отсюда потенциал узла n

(3)

На рис. 10, б показана векторная диаграмма напряжений в цепи. Система векторов фазных напряжений образует симметричную звезду. Векторы линейных напряжений замыкают концы фазных, образуя правильный треугольник. На нагрузочном конце линии звезда фазных напряжений должна быть вписана в треугольник линейных. А поскольку линейные напряжения одинаковы на генераторном и на нагрузочном концах линии (потерями напряжения в фазных проводах мы пренебрегаем с целью выделения только эффекта нарушения в нулевом проводе), то концы векторов и попарно совпадают (рис. 10, б). А так как для несимметричной нагрузки три её фазных напряжения различны, то звезда их векторов будет искажена, т.е. точка n их общего начала будет смещена от центра симметрии N . Величина такого смещения и определяется вектором U n . Как видно из рис. 10, б, построенные из точки n векторы удовлетворяют второму правилу Кирхгофа для каждого из трёх контуров цепи; например, для контура фазы 1:. В зависимости от импедансов фаз нагрузки и сопротивления нулевого провода, точка n может находиться в любом месте внутри треугольника линейных напряжений, и даже вне его. И только при идеально проводящем нулевом проводе точка n совпадает с N при любых ненулевых импедансах Z 1 , Z 2 , Z 3 .

Замечание. Из изложенного видно, что зануление корпуса прибора не эквивалентно его заземлению: хотя вблизи генераторов (на подстанциях) нулевой провод всегда заземлён, т.е. , но из-за конечности сопротивления нулевого провода, при нарушении симметрии нагрузки (а это всегда в какой-то степени есть) потенциал .

Итак, в случае нарушений в нулевом проводе происходит искажение симметрии напряжений на нагрузке: фаза нагрузки с меньшим сопротивлением оказывается под сниженным, а фаза с большим – под повышенным напряжением по сравнению с номинальным фазным U ф . Так как подобные нарушения режима для потребителей электроэнергии недопустимы, то на качество нулевого провода обращается особое внимание. Рубильники, предохранители и другие устройства, способные вызвать его разрыв, в нём не устанавливаются. По этой же причине потребители никогда не применяют соединения фаз нагрузки звездой без нейтрального провода (рис. 8), если заведомо известно, что нагрузка по фазам будет несимметричной. Всякое же нарушение или обрыв фазного провода при хорошем нулевом скажется только на потребителях данной фазы, в двух других фазах напряжения практически не изменятся.

© 2024. eltctricon.ru. Портал профессионального электрика.