Составляющие системы ультразвуковой диагностики генератор ультразвуковых волн. Ультразвуковые датчики

Физические и технические основы ультразвукового исследования и принципы ультразвуковой диагностики

Звук - это механическая продольная волна, в которой колебания частиц находится в той же плос­кости, что и направление распространения энер­гии. Верхняя граница слышимого звука - 20000 Гц. Звук с частотой, превышающей эту величину, называется ультразвуком. Частота - это число полных колебаний (циклов) за период вре­мени в 1 секунду. Единицами измерения частоты являются герц (Гц) и мегагерц (МГц ). Один герц - это одно колебание в секунду. Один мега­герц = 1000000 герц. В современных ультразвуковых при­борах для получения изображения используется ультразвук частотой от 2 МГц и выше.

Для получения ультразвука используются специ­альные преобразователи - датчики или трансдьюсеры, которые превращают электрическую энергию в энергию ультразвука. Получение ультразвука базируется на обратном пьезоэлектрическом эффекте.

Датчиком УЗ сканера (по-английски Probe) называют выносное устройство, которое служит для локации объекта УЗ колебаниями и приема и преобразования в электрические импульсы отраженных звуковых сигналов (эхо). Датчик содержит один или несколько пьезоэлементов и другие механические и электрические компоненты, тип которых зависит от назначения датчика

Рисунок 1. Устройство одномерного УЗ датчика.

В металлическом корпусе 1 расположен пьезоэлемент 2, который снаружи покрыт согласующим слоем 3. С тыльной стороны пьезоэлемента расположен демпфер 4 – слой пористой керамики, предназначенный для гашения звуковых колебаний, излучаемых назад, и для получения коротких УЗ импульсов. Возбуждение и съем сигнала с ПЭП осуществляется через коаксиальный разъем. Для уменьшения зарядного тока ПЭП и формирования зондирующего импульса в его цепь включают индуктивность 5 – дроссель.

Чтобы пьезопреобразователь работал на частоте собственного механического резонанса, его толщину выбирают равной половине длины волны возникающих в нем звуковых колебаний. Например, при частоте 3 МГц толщина пьезоэлемента будет равна 0,67 мм.

Зондирование таким датчиком осуществляется путем непосредственного контакта с поверхностью тела. При этом неизбежны потери мощности УЗ колебаний из-за отражения. Для его уменьшения и служит согласующий слой. При его отсутствии вследствие большого различия волновых импедансов пьезоэлектрика и мягких тканей коэффициент отражения был бы равен 0,87, т.е. лишь 13% излучаемой энергии проходило бы в ткани

Для исключения отражений необходимо, чтобы волновой импеданс согласующего слоя Z был равен среднегеометрической величине волновых импедансов ZП и ZТ пьезоэлектрика и тканей:

Например, волновой импеданс ZС согласующего слоя для пьезоэлемента из ЦТС-19 будет равен примерно 3,7 Zводы (с учетом того, что ZТ Zводы). Толщина согласующего слоя берется равной четверти длины волны в мягких тканях, в данном случае 0,25 мм.

Различные способы отображения (визуализации) УЗ эхо-сигналов называются эхограммами. Простейшей из них является А-эхограмма. Она получается при локации объекта одномерным датчиком вдоль какого-либо направления и представляет собой некоторую кривую на экране ЭЛТ. Механизм получения А-эхограммы поясняет рис. 2.

Рисунок 2. А – эхограмма


Датчик

А-эхограммы имеют ограниченное самостоятельное применение. Более распространена М-эхограмма, название которой происходит от английского словосочетания motion-time – движение-время. Этот вид эхограммы используют для исследования подвижных объектов, в основном сердца. Ее сущность поясняет рис. 3.

Рис. 3. М-эхограмма


Кроме стенок миокарда УЗ луч отражают и другие отделы сердца, и результирующая М-эхограмма получается очень сложной. Опытный врач-кардиолог может извлечь из нее много полезной информации: размеры сердца в разных стадиях (показано на рисунке), характер движения стенок и клапанов и многое другое. Описанный механизм получения М-эхограммы характерен для аналоговых УЗ сканеров. В цифровых сканерах он выглядит несколько иначе. Учитывая большую диагностическую информативность М-эхограммы, ее обязательно включают в набор режимов современных УЗ аппаратов.

Основным способом УЗ визуализации внутренних органов является двухмерная В-эхограмма. Она представляет собой изображение сечения внутреннего органа или структуры и, по сути, является томограммой. Ее получают с помощью сканирующих двухмерных датчиков, которые различаются по способу сканирования – с механическим и электронным управлением и по виду получаемого изображения (растра) – секторные и линейные.

Датчики с механическим управлением дают только секторные изображения, а датчики с электронным управлением – могут давать изображения в секторном и прямоугольном растрах. Долгое время секторные механические датчики оставались основным типом датчиков УЗ сканеров. Они проще в изготовлении и имеют меньшую стоимость, чем линейные. Последние стали широко применяться, когда были разработаны способы управления, позволившие существенно улучшить качество изображения.

Для адекватного воспроизведения УЗ изображения на экране монитора необходимо знать точное угловое положение пьезоэлемента. Оно определяется с помощью специального датчика углового положения, который входит в состав УЗ датчика. Определенную проблему для разработчиков УЗ сканеров создает малая частота качаний пьезоэлемента. В аналоговых моделях УЗ аппаратов это приводило к мерцанию изображения на экране, ухудшало его восприятие и утомляло зрение. В цифровых аппаратах при той же частоте качаний пьезоэлемента этот недостаток отсутствует.

Основу линейного датчика составляет многоэлементная пьезорешетка, или матрица. Она состоит из большого числа пьезоэлементов (от 50 до 300), разделенных между собой слоем изоляции.

Ввиду малости апертуры элемента решетки (d) его УЗ луч будет сильно расходящимся, а мощность излучения – чрезвычайно малой. Поэтому объект сканируют группой из n элементов, которую называют апертурой датчика.

Апертура датчика обычно содержит от 16 до 32 элементов. С помощью электронных средств управления – ключей и сдвигающих регистров – осуществляют перемещение результирующего луча вдоль решетки. На каждом шаге апертура датчика излучает УЗ колебания и принимает эхо-сигналы, т.е. формирует строку УЗ изображения.

Общее количество таких строк равно Nстр = N – n + 1, где N – число элементов пьезорешетки. Например, чтобы получить 256 строк УЗ изображения при n = 32, необходимо N = 287. Заметим, что некоторые фирмы (Toshiba), производящие УЗ аппаратуру, применяют сканирование с чередующимся числом n элементов апертуры, например 48 – 47. Тем самым получают шаг сканирования, равный d/2, т.е. увеличивают число строк вдвое по сравнению с числом элементов. Разумеется, для этого требуются более сложные аппаратные (и программные) средства.

Широко применяются так называемые конвексные датчики. Они занимают промежуточное положение между секторными и линейными датчиками. Их пьезорешетка, как и у линейных, содержит большое (хотя и меньшее) количество элементов, но она изогнута в виде дуги. Это позволяет, с одной стороны, организовать управляемую фокусировку луча, а с другой – получить веерный растр. Поэтому конвексный датчик при относительно малых размерах позволяет получить большое поле обзора при хорошем качестве изображения.

Кроме рассмотренных выше типов эхограмм в УЗ диагностике иногда применяют С-эхограммы. Их получают путем фронтального сканирования объекта, в результате чего строится изображение сечения на определенной глубине. Сканирование обычно выполняют вручную, а сама процедура требует специальных приспособлений: ванна с водой, куда помещается пациент, механический датчик координат и др. Разумеется, аппаратура для С-сканирования должна быть цифровой, с памятью.

Разновидности датчиков для УЗИ аппаратов

Датчик – одна из важнейших частей УЗИ аппарата. Именно от датчика зависит, какие органы и на какой глубине могут быть исследованы. Так, например, датчик, предназначенный для мелких животных, будет недостаточно мощным для исследования органов крупных животных и наоборот

Линейные датчики. Рабочая частота 5-15 МГц. Глубина сканирования небольшая (до 10 см). За счет высокой частоты сигнала позволяют получать изображение с высоким разрешением. Линейные УЗИ датчики могут использоваться для исследовании поверхностно расположенных органов, мышц и небольших суставов, сосудов.

Конвексные датчики. Рабочая частота 2-7,5 МГц. Глубина сканирования - до 25 см. Изображение по ширине на несколько сантиметров больше размеров датчика. Для определения точных анатомических ориентиров специалист должен учитывать эту особенность. Конвексные датчики используются для сканирования глубоко расположенных органов: брюшная полость, мочеполовая система

Секторные датчики. Рабочая частота 1,5-5 МГц. Используется в случаях, когда нужно с небольшого участка получить большой обзор на глубине. Используется для исследования межреберных промежутков, сердца

Внутриполостные датчики. Внутриполосные датчики. Вагинальные (кривизна 10-14 мм), ректальные, либо ректально-вагинальные (кривизна 8-10 мм). Предназначены для исследований и области гинекологии, урологии, акушерства

Биплановые датчики. Состоят из двух совмещенных излучателей. Конвекс + конвекс, либо линейка + конвекс. Позволяют получать изображения как в поперечном, так и в продольном срезе. Помимо биплановых, существуют трех-плановые датчики с одновременным выводом изображений со всех излучателей.

3D/4D объемные датчики. Механические датчики с кольцевым вращением, либо угловым качением. Позволяют проводить автоматическое посрезовое сканирование органов, после чего данные преобразуются сканером в трехмерную картинку. 4D – трехмерное изображение в реальном времени. Возможен просмотр всех срезовых изображений

Матричные. Датчики с двумерной решеткой. Делятся на:

· 1.5D (полуторомерные). Количество элементов по ширине решетки меньше, чем по длине. Это обеспечивает максимальное разрешение по толщине.

· 2D (двумерные). Решетка представляет собой прямоугольник с большим количеством элементов по длине и ширине. Позволяют получать 4D изображение, одновременно выводить на экран несколько проекций и срезов.

Карандашные (слепые CW) датчики. Датчики с раздельным приёмником и излучателем. Используются для артерий, вен конечностей и шеи - 4-8 МГц, сердца - 2 МГц.

Названия и типы датчиков УЗИ связаны с используемыми ультразвуковыми преобразователями и способами сканирования. Выделяются следующие типы:

  • линейные;
  • конвексные и микроконвексные;
  • фазированные секторные и др.

Основной характеристикой ультразвукового датчика УЗИ принято считать рабочую частоту. Следует учитывать, что при увеличении частоты снижается глубина исследования. Так что выбор частоты нужно делать с учетом максимальной глубины, на которой находятся исследуемые органы. Например, для проведения обследований пациентов с излишним весом следует пользоваться меньшими частотами.

Удобнее классифицировать датчики для УЗИ аппаратов по областям их медицинского применения:

  • для наружного обследования органов малого таза и абдоминальной области;
  • для поверхностно расположенных органов (суставы, периферийные сосуды, щитовидная железа);
  • кардиологические;
  • для педиатрии (отличаются от приборов для взрослых большей частотой);
  • внутриполостные – отличаются по областям применения (трансвагинальные, трансректальные, трансуретральные, интраоперационные, внутрисосудистые, чреспищеводные);
  • узкоспециализированные – для диагностики гайморитов, фронтитов и синуситов, офтальмологические, транскраниальные и ветеринарные;
  • доплеровские – для исследований скоростей кровотока в сосудах.

Датчиками УЗИ для получения 3-х мерных изображений пользуются редко, чаще применяют двумерные вместе с программным обеспечением, позволяющим построить 3d изображение.

Цена датчиков УЗИ

Компания UMETEX предлагает широкий выбор ультразвуковых датчиков различных типов для применения в любых областях медицины. Наши специалисты предоставят вам всю необходимую информацию о технических параметрах датчиков и их совместимости с ультразвуковыми аппаратами.

Стоимость датчика УЗИ сканера зависит от следующих параметров:

  • фирмы-изготовителя;
  • модели;
  • типа датчика;
  • функциональных возможностей.

Вы всегда можете выбрать и купить ультразвуковой датчик, необходимый для работы вашего УЗИ аппарата, в нашей компании. Если его еще нет в нашем каталоге, то мы закажем для вас любое устройство у ведущих производителей ультразвукового оборудования, с которыми мы тесно сотрудничаем.

Описание ультразвуковых датчиков Microsonic

Ультразвуковые датчики излучают короткие высокочастотные звуковые импульсы определенного интервала. Они распространяются в воздухе со скоростью звука. При встрече с объектом, звуковая волна отражается от него обратно в качестве эха. Датчик воспринимает этот сигнал и рассчитывает расстояние до объекта, основываясь на временном промежутке между измерением сигнала и получением эха сигнала.

Ультразвуковые датчики идеально подавляют фоновые шумы, так как расстояние до объекта определяется с помощью измерения времени полета звуковой волны, а не её интенсивности. Практически все материалы, отражающие звук, могут использоваться в качестве объектов обнаружения, независимо от их цвета. Даже прозрачные материалы и тонкие пленки не представляют проблемы для ультразвуковых датчиков. Ультразвуковые датчики Microsonic могут определять цели на расстоянии от 30 мм до 8 м, при этом производя измерения с очень высокой точностью. Некоторые модели датчиков способны выполнять измерения с точностью до 0,18 мм. Ультразвуковые датчики могут видеть через запыленный воздух, туман или частицы тонера. Даже небольшой налет на мембране сенсора не влияет на его работу. Слепая зона датчика составляет всего 20 мм, а плотность излучаемого потока очень мала, что делает возможным использование датчиков в совершенно новых применениях. Датчики измеряют уровень заполнения небольших бутылок на конвейере, и даже могут определить наличие тонких нитей.

Общее описание ультразвуковых датчиков с аналоговым и дискретным выходом.

Ультразвуковой датчик представляет собой устройство, состоящее из ультразвукового излучателя, электронной части и на противоположной стороне - выходной разъем или кабель. Датчик формирует аналоговый сигнал, пропорциональный расстоянию до объекта или дискретный сигнал, который изменяется при достижении объектом заранее установленного расстояния.

На электронной части находится пьезоэлемент, который излучает ультразвук в режиме генерации и преобразует принятые колебания в электрический ток в режиме приема. Внутри датчика расположены схемы управления и преобразователи. Электронная схема измеряет время прохождения УЗ в среде и преобразует его в аналоговый или цифровой выходной сигнал.

Различают следующие типы датчиков:

  • устройства, работающие на принципе отражения сигнала от объекта;
  • устройства, обнаруживающие объект, находящиеся между приемником и передатчиком.

Точность измерения зависит от следующих факторов:

  • температура окружающей среды (в связи с этим введена температурная компенсация);
  • влажность воздуха, в котором распространяется ультразвук;
  • давление среды.

Так как основную информацию о расстоянии до объекта дает отраженный сигнал, характеристика поверхности наряду с углом падения звуковой волны значительно влияет на работу УЗ-датчиков. Лучше всего датчики работают с хорошо отражающими поверхностями: стеклом, жидкостями, гладким металлом, деревом, пластиком. Для устойчивой работы датчика рекомендуется, чтобы поверхности с грубым рельефом располагались в положении, близком к перпендикулярному направлению луча.
Для гладких поверхностей, допустимо отклонение от перпендикулярного направления УЗ луча не более, чем на 3 градуса.

В месте установки датчиков следует избегать завихрений воздушных потоков, а также учитывать факт взаимного влияния датчиков при их близком расположении друг к другу. Здесь можно опираться на данные таблицы, приведенной в разделе «Правила установки».

Примеры использования

Ультразвуковые датчики определяют расстояние до поверхности практически любой жидкости.

Ультразвуковые датчики отлично подходят для работы с прозрачными объектами.

Ультразвуковые датчики могут применяться для измерения уровня краски.

Датчики определяют практически все ткани.

Белое на белом, черное на черном?

Ультразвуковые датчики определяют объекты независимо от фона, на котором они находятся.

Опилки, щебёнка или мелкий песок

В измерении уровня таких материалов ультразвуковые датчики не имеют конкурентов.

Режимы работы ультразвуковых датчиков Microsonic

Режим датчика наличия объекта
Ультразвуковой датчик в данном режиме работает, как классический датчик приближения (емкостной, оптический и т.д.). Датчик срабатывает при приближении объекта к датчику на расстояние меньшее или равное задаваемому расстоянию срабатывания. Этот режим используется для подсчета количества или определения присутствия объекта.

Режим «окна»
В данном режиме датчик срабатывает только когда объект находится в определенной зоне, задаваемой двумя значениями – минимальным и максимальным. Этот режим может использоваться для контроля размеров изделий или контроля положения объектов в различных системах управления.






В данном режиме, в отличие от режима окна, датчик игнорирует звуковые волны, отраженные от объектов, расположенных ближе задаваемой дистанции срабатывания. Это позволяет игнорировать небольшие объекты, расположенные на переднем плане перед зоной срабатывания (например – горлышко бутылки при контроле уровня наполнения продукта в стекло- или пэт-тару). В данном случае датчик работает как датчик расстояния.


Для работы в этом режиме необходимо наличие отражателя. В качестве отражателя может использоваться любой хорошо отражающий звук объект (например, металлическая пластина). Данный режим применяется для работы с объектами, плохо отражающими звук либо объектами со сложной геометрией (когда отраженные звуковые волны не попадают на поверхность сенсора). В данном случае датчик работает как датчик расстояния.




В данном режиме датчик выдает сигнал 4…20 мА или 0…10 В, пропорционально расстоянию до объекта. Датчику можно задать пределы рабочего диапазона, а также тип сигнала – прямо- или обратно-пропорциональный расстоянию. Независимо от рабочего диапазона и типа датчика, разрешение всегда составляет 0,025…0,36 мм. В данном случае датчик работает как датчик расстояния.


Некоторые серии датчиков microsonic могут использоваться для контроля 2-х и более листов, случайно сомкнувшихся вместе. Эта система может использоваться для определения бумаги, пленок, картона или фольги. Датчик определяет наличие сдвоенных листов или отсутствие листов вообще. В данном случае датчик работает как датчик положения или датчик приближения.





УЗ датчик с цифровым выходом (IO-Link)
Выполняет непрерывную коммуникацию на всех уровнях системной архитектуры, от датчика до верхнего предела рабочего диапазона. Измеренное расстояние передается на контроллер в виде последовательности бит.


Работает по тому же принципу, как и датчик контроля двойного листа. Так как внутреннее прилипание наклеек к подложке представляет собой соединение без слоя воздуха между ними, датчики наклейки необходимо откалибровать на подложку и на сами наклейки.






Разработан в форме вилки и также работает в качестве одностороннего барьера. Используется для управления движением по траектории и выдаёт аналоговый сигнал 0…10 В или 4…20 мА, пропорциональный ориентации края траектории.



Области применения

Благодаря компактным размерам датчики pico с резьбой M18 идеальны для позиционирования механической руки промышленных роботов.

Контроллер wms-4/4I с четырьмя аналоговыми выходами
4…20 мА идеально подходит для контроля диаметра плёнки на экструдере.

Ультразвуковые датчики определяют с высокой точностью высоту укладки досок, стекол, листов бумаги, пластиковых панелей.

При сканировании стекол или других гладких, плоских поверхностей, необходимо, чтобы ультразвуковой датчик был расположен перпендикулярно поверхности.

Контроль этикетки

Датчики серии hps+ способны выполнять измерения уровня в среде под давлением до 6 бар, благодаря устойчивой к давлению головки датчика. Благодаря резьбе на корпусе датчика, он подходит для стандартных применений.

Контроль края

УЗ датчики края серии bks выполнены в виде вилки и работают по принципу одностороннего барьера. Датчики применяются для контроля края и имеют аналоговый выходной сигнал 0…10 В или 4…20 мА пропорциональный ориентации края.

Определение стыка

Датчик серии esp-4 служит для определения стыков и этикеток. Он доступен в двух исполненниях корпуса M18 и M12 с внешним приёмником.

Контроль контуров

С помощью нескольких синхронизированных между собой датчиков можно определять контуры объектов на конвейерной ленте. Датчики серии mic+ и pico+ имеют встроенную функцию синхронизации и подходят для этой задачи.

Если определяемый объект поглощает ультразвуковые волны или отклоняет их из-за своей формы или положения в лотке, то предпочтительнее использовать датчик в режиме двухстороннего или отражающего барьера. В этой ситуации дополнительный отражатель помещается за объектом. Ультразвуковой датчик с дискретным выходом, работающий в режиме окна, выдаёт сигнал, как только объект закрывает отражатель.

Серия датчиков trans-o-prox представляет бесконтактную защиту автоматизированных управляемых транспортных средств (AGVs) по направлению движения. Со стороны движения промышленного транспорта можно установить до четырех ультразвуковых датчиков. С помощью настройки диапазонов сигнализации и торможения, транспорт можно мягко останавливать перед препятствием без специального контактного механизма торможения на бампере.

Для этих целей используются датчики с дискретным выходом, например, серии mic+ , диапазон зависит от размера коробки или контейнера. Датчики mic+25/D/TC , mic+35/D/TC и mic+130/D/TC подходят для определения объектов в маленьких коробках. Датчики mic+340/D/TC или mic+600/D/TC предназначены для работы с более крупными контейнерами. В случае использования нескольких датчиков для сканирования коробки рекомендуется использовать дополнительно wms-контроллер.

Ультразвуковые датчики способны определять два или более листа, прилипших друг к другу. Датчики серии dbk-4 идеально подходят для применения в областях, где используется бумага, например, в печатных машинах, принтерах, фотокопировальных устройствах или листоподборочных машинах. Для более плотных материалов, таких как пластмассовые листы или грубый гофрированный картон, используйте серию dbk-5.

Основные параметры
Различные режимы работы и конфигурации устройства позволяют использовать ультразвуковые датчики в различных автоматизированных применениях.

Слепая зона . Определяет минимальное расстояние обнаружения. В слепой зоне нельзя располагать объекты или отражатели, так как это приведет к неправильным измерениям.

Диапазон обнаружения . Представляет собой максимальное расстояние обнаружения в условиях идеального отражения.

Это типичная рабочая область датчика. Датчик может также работать на дистанциях вплоть до максимального диапазона в случае хорошего отражения.

Правила установки и работы с датчиками

Ультразвуковые датчики могут работать в любом положении. Однако, следует избегать положений, при которых происходит сильное загрязнение поверхности сенсора. Капли воды и различные осадки на поверхности датчика могут влиять на работу, но небольшой слой пыли или краски не оказывают влияния на работу. Для сканирования объектов с плоской и гладкой поверхностью следует устанавливать датчики под углом 90 ±3°. С другой стороны, неровные поверхности могут охватываться под большими углами. В понятии ультразвуковых датчиков, поверхность считается грубой, когда глубина её шероховатостей больше либо равна длине ультразвуковой волны. Звук затем отражается в рассеянной форме, что приводит к сокращению рабочего диапазона. В случае с грубыми поверхностями максимально допустимое отклонение угла и максимально возможный диапазон определения должен определяться опытным путем. Звукопоглощающие материалы, такие как вата или мягкие пенки также уменьшают рабочий диапазон. С другой стороны, жидкие твердые материалы являются очень хорошими отражателями звука.


Монтажное положение и синхронизация . Два или более установленных рядом датчика могут оказывать влияние друг на друга. Во избежание этого датчики необходимо устанавливать на достаточно большом расстоянии или синхронизировать их между собой. В следующей таблице представлены минимальные монтажные расстояния между не синхронизированными датчиками.


Монтажные расстояния должны рассматриваться, как стандартные значения. При расположении объектов под углом звук может отражаться на соседний датчик. В этом случае минимальные монтажные расстояния следует определять опытным путем.


Некоторые датчики могут синхронизироваться друг с другом, что позволяет использовать меньшие монтажные расстояния, чем указанные в таблице. Если ультразвуковые датчики установлены на расстоянии меньшем, чем указаны в таблице, их следует синхронизировать друг с другом, что позволит им выполнять измерения в одно и то же время.

Большинство датчиков microsonic имеют встроенную синхронизацию, которая активируется подключением контакта Pin 5 на коннекторе. Другим датчикам требуется внешний сигнал синхронизации.

Перенаправление звука . Звуковую волну можно перенаправить без существенных потерь с помощью звукоотражающей, гладкой поверхности. С помощью дополнительного оборудования можно отклонить звук на 90°. Это можно использовать в особых применениях.

Точность . Абсолютная точность – это несоответствие реального расстояния между датчиком и объектом и измеренным датчиком расстоянием. Точность зависит от отражающих свойств объекта и физических явлений, воздействующих на скорость звука в воздухе. Объекты с низкими отражающими свойствами или с неровностями поверхности, превышающими длину ультразвуковой волны, имеют негативное влияние на точность. Это невозможно определить точно, но как правило, принимается погрешность нескольких длин волны используемой сверхзвуковой частоты.

Температура воздуха . Самое большое влияние на скорость звука и на точность оказывает температура воздуха (0,17%/K), поэтому большинство ультразвуковых датчиков microsonic имеют температурную компенсацию. Еще лучше осуществить сравнительное измерение по конкретному расстоянию, чтобы определить влияние температуры. Например, датчики серии pico специально разработаны для таких сравнительных измерений. Точность датчиков с термокомпенсацией доходит до ±1%.

Атмосферное давление . Скорость звука по широкому диапазону не зависит от давления воздуха. Компания microsonic разработала специальные датчики для измерения расстояния в условиях избыточного давления до 6 бар.

Относительная влажность . В отличие от температуры относительная влажность воздуха практически не оказывает влияния на точность измерений.

Стабильность позиционирования R . Стабильность позиционирования, или воспроизводимость, описывает отклонение измеренного расстояния при одинаковых условиях за конкретный период. Стабильность позиционирования датчиков microsonic составляет менее ±0,15%.

Метод определения зоны обнаружения ультразвуковых датчиков Microsonic

Наиболее важным критерием при выборе ультразвукового датчика является его дальность обнаружения и связанная трехмерная зона обнаружения . При ультразвуковом измерении, различные стандартные отражатели вводят извне в зону обнаружения датчика на расстоянии, на котором эти отражатели начинают определяться датчиком. Объекты могут быть введены в зону обнаружения с любого направления.

Красные области определяют размеры тонкого круглого стержня (10 или 27 мм., в зависимости от типа датчика), характеризующий рабочий диапазон датчика.

Для определения голубых областей: пластина (500×500 мм) устанавливается на пути распространения луча ультразвука. При этом применяется оптимальный угол между пластиной и датчиком. Таким образом, это указывает на максимальную зону обнаружения датчика. За пределами синей области, объект уже невозможно обнаружить.

Отражатель с отражающими свойствами хуже, чем у круглого стержня, может определяться в зоне меньше, чем красная область. В свою очередь, отражатель с лучшими свойствами будет определяться в области между красной и голубой областями. Слепая зона датчика определяет его наименьший допустимый диапазон обнаружения. Объекты или отражатели нельзя располагать в слепой зоне, поскольку это приведет к неверным измерениям.

Рабочие диапазоны приведены на диаграмме. В этих диапазонах, датчик будет гарантированно определять наличие обычных отражателей. Также, на диаграмме приведены области обнаружения датчиком отражателей с хорошими отражающими свойствами. Максимальная дальность обнаружения всегда больше, чем рабочий диапазон. Диаграммы составлены для 20 °C, относительной влажности 50% и атмосферном давлении. Конкретные зоны обнаружения зависят от типа датчика, и их можно посмотреть, пройдя в раздел соответствующего датчика, во вкладку "Зоны обнаружения".


Эти символы в технических параметрах определяют
рабочий диапазон ультразвуковых датчиков Microsonic

Затухания звука в воздухе зависят от температуры и давления воздуха, а также его относительной влажности. Физические параметры связаны и оказывают различный эффект на разных частотах ультразвука. Для простоты можно сказать, что затухание в воздухе увеличивается с повышением температуры и повышением влажности. Это уменьшает рабочий диапазон датчика.

При более низкой относительной влажности и пониженной температуре, затухание в воздухе уменьшается и рабочая зона соответственно увеличивается.

Уменьшение рабочего диапазона в основном компенсируется за счет настроек датчика. И при температуре ниже 0 °C, некоторые датчики могут работать на расстояниях, вдвое превышающим приведенные здесь.

При повышении давления, затухание в воздухе значительно уменьшается. Этот аспект должен учитываться при применении датчика в среде с повышенным давлением. Распространение звука невозможно в вакууме.

Физическая основа УЗИ - пьезоэлектрический эффект. При деформации монокристаллов некоторых химических соединений (кварц, титанат бария) под воздействием ультразвуковых волн, на поверхности этих кристаллов возникают противоположные по знаку электрические заряды - прямой пьезоэлектрический эффект. При подаче на них переменного электрического заряда, в кристаллах возникают механические колебания с излучением ультразвуковых волн. Таким образом, один и тот же пьезоэлемент может быть попеременно то приёмником, то источником ультразвуковых волн. Эта часть в ультразвуковых аппаратах называется акустическим преобразователем, трансдюсером или датчиком.

Ультразвук распространяется в средах в виде чередующихся зон сжатия и расширения вещества. Звуковые волны, в том числе и ультразвуковые, характеризуются периодом колебания- временем, за которое молекула (частица) совершает одно полное колебание; частотой- числом колебаний в единицу времени; длиной- расстоянием между точками одной фазы и скоростью распространения, которая зависит главным образом от упругости и плотности среды. Длина волны обратно пропорциональна её частоте. Чем меньше длина волн, тем выше разрешающая способность ультразвукового аппарата. В системах медицинской ультразвуковой диагностики обычно используют частоты от 2 до 10 МГц. Разрешающая способность современных ультразвуковых аппаратов достигает 1-3 мм.

Любая среда, в том числе и ткани организма, препятствует распространению ультразвука, то есть обладает различным акустическим сопротивлением, величина которого зависит от их плотности и скорости распространения звуковых волн. Чем выше эти параметры, тем больше акустическое сопротивление. Такая общая характеристика любой эластической среды обозначается термином «акустический импеданс».

Достигнув границы двух сред с различным акустическим сопротивлением, пучок ультразвуковых волн претерпевает существенные изменения: одна его часть продолжает распространяться в новой среде, в той или иной степени поглощаясь ею, другая - отражается. Коэффициент отражения зависит от разности величин акустического сопротивления граничащих друг с другом тканей: чем это различие больше, тем больше отражение и, естественно, больше амплитуда зарегистрированного сигнала, а значит, тем светлее и ярче он будет выглядеть на экране аппарата. Полным отражателем является граница между тканями и воздухом.

В простейшем варианте реализации метод позволяет оценить расстояние до границы разделения плотностей двух тел, основываясь на времени прохождения волны, отраженной от границы раздела. Более сложные методы исследования (например, основанные на эффекте Допплера) позволяют определить скорость движения границы раздела плотностей, а также разницу в плотностях, образующих границу.

Ультразвуковые колебания при распространении подчиняются законам геометрической оптики. В однородной среде они распространяются прямолинейно и с постоянной скоростью. На границе различных сред с неодинаковой акустической плотностью часть лучей отражается, а часть преломляется, продолжая прямолинейное распространение. Чем выше градиент перепада акустической плотности граничных сред, тем большая часть ультразвуковых колебаний отражается. Так как на границе перехода ультразвука из воздуха на кожу происходит отражение 99,99 % колебаний, то при ультразвуковом сканировании пациента необходимо смазывание поверхности кожи водным желе, которое выполняет роль переходной среды. Отражение зависит от угла падения луча (наибольшее при перпендикулярном направлении) и частоты ультразвуковых колебаний (при более высокой частоте большая часть отражается).

Для исследования органов брюшной полости и забрюшинного пространства, а также полости малого таза используется частота 2,5 - 3,5 МГц, для исследования щитовидной железы используется частота 7,5 МГц.

Особый интерес в диагностике вызывает использование эффекта Допплера. Суть эффекта заключается в изменении частоты звука вследствие относительного движения источника и приемника звука. Когда звук отражается от движущегося объекта, частота отраженного сигнала изменяется (происходит сдвиг частоты).

При наложении первичных и отраженных сигналов возникают биения, которые прослушиваются с помощью наушников или громкоговорителя.

Составляющие системы ультразвуковой диагностики Генератор ультразвуковых волн

Генератором ультразвуковых волн является датчик, который одновременно играет роль приемника отраженных эхосигналов. Генератор работает в импульсном режиме, посылая около 1000 импульсов в секунду. В промежутках между генерированием ультразвуковых волн пьезодатчик фиксирует отраженные сигналы.

Ультразвуковой датчик

В качестве детектора или трансдюсора применяется сложный датчик, состоящий из нескольких сотен мелких пьезокристаллических преобразователей, работающих в одинаковом режиме. В датчик вмонтирована фокусирующая линза, что дает возможность создать фокус на определенной глубине.

Виды датчиков

Все ультразвуковые датчики делятся на механические и электронные. В механических сканирование осуществляется за счет движения излучателя (он или вращается или качается). В электронных развертка производится электронным путем. Недостатками механических датчиков являются шум, вибрация, производимые при движении излучателя, а также низкое разрешение. Механические датчики морально устарели и в современных сканерах не используются. Используются три типа ультразвукового сканирования: линейное (параллельное), конвексное и секторное. Соответственно датчики или трансдюсоры ультразвуковых аппаратов называются линейные, конвексные и секторные. Выбор датчика для каждого исследования проводится с учетом глубины и характера положения органа.

Линейные датчики

Линейные датчики используют частоту 5-15 Мгц. Преимуществом линейного датчика является полное соответствие исследуемого органа положению самого трансдюсора на поверхности тела. Недостатком линейных датчиков является сложность обеспечения во всех случаях равномерного прилегания поверхности трансдюсора к коже пациента, что приводит к искажениям получаемого изображения по краям. Также линейные датчики за счет большей частоты позволяют получать изображение исследуемой зоны с высокой разрешающей способностью, однако глубина сканирования достаточно мала (не более 11 см). Используются в основном для исследования поверхностно расположенных структур - щитовидной железы, молочных желез, небольших суставов и мышц, а также для исследования сосудов.

Конвексные датчики

Конвексный датчик использует частоту 1,8-7,5 МГц. Имеет меньшую длину, поэтому добиться равномерности его прилегания к коже пациента более просто. Однако при использовании конвексных датчиков получаемое изображение по ширине на несколько сантиметров больше размеров самого датчика. Для уточнения анатомических ориентиров врач обязан учитывать это несоответствие. За счет меньшей частоты глубина сканирования достигает 20-25 см. Обычно используется для исследования глубоко расположенных органов - органы брюшной полости и забрюшинного пространства, мочеполовой системы, тазобедренные суставы.

Секторные датчики

Секторный датчик работает на частоте 1,5-5 Мгц. Имеет ещё большее несоответствие между размерами трансдюсора и получаемым изображением, поэтому используется преимущественно в тех случаях, когда необходимо с маленького участка тела получить большой обзор на глубине. Наиболее целесообразно использование секторного сканирования при исследовании, например, через межреберные промежутки. Типичным применением секторного датчика является эхокардиография - исследование сердца.

Основные режимы сканирования на современных ультразвуковых диагностических сканерах: В-режим, цветовое допплеровское картирование, энергетическое допплеровское картирование, импульсно-волновой допплеровский режим, постоянно-волновой допплеровский режим (только для кардиологических исследований). Все эти режимы реализованы на трех основных типах датчиков: конвексных, линейных, секторных фазированных. Знание основ физики диагностического ультразвука, принципов настройки параметров сканирования в основных режимах, использование информационных технологий, реализованных в современном оборудовании, позволяет получить максимальную диагностическую эффективность при проведении ультразвуковых исследований.

В настоящее время на всех УЗ сканерах имеется В-режим в реальном масштабе времени. Большинство приборов поддерживают допплеровские режимы: цветовое и энергетическое допплеровское картирование, импульсно-волновой допплеровский режим. Приборы, предназначенные для кардиологических исследований, как правило, имеют постоянно-волновой допплеровский режим. Импульсно-волновой и постоянно-волновой допплеровские режимы также называют спектральными. Нередко вместо термина «допплеровский режим» используют термин «допплер».

В-режим (от английского слова Brightness – яркость, иногда называют также 2D) является основным во всех областях исследования. Попытаемся очень упрощенно изложить физику формирования данного режима. Посылаются короткие импульсы, которые отражаются от границ сред с различным акустическим сопротивлением. Датчик преимущественно «слушает», меньше «разговаривает». По времени прошедшему от момента посылки сигнала можно рассчитать расстояние до отражающего объекта, т.к известна скорость распространения ультразвука в тканях. Интенсивность отраженного сигнала кодируется оттенками серого цвета. Пьезоэлементы работают группами, которые формируют УЗ луч на передачу и прием. Из луча формируется «акустическая строка» (ориентирована вертикально). Затем активная группа смещается, формируется следующая строка. Построчно формируется один кадр изображения в В-режиме.



Рис. 1. Изображение на мониторе УЗ-сканера в B-режиме

M-режим (от английского слова motion – движение). Данный режим позволяет получить информацию об изменении положения движущихся структур в формате одномерного изображения. На оси ординат фиксируется расстояние от датчика до исследуемой анатомической структуры, а на оси абсцисс – время исследования. Амплитуда отраженного эхосигнала кодируется оттенками серого цвета.



Рис. 2. Исследование митрального клапана сердца в M-режиме УЗ-сканера

M-режим исторически был долгое время единственным в УЗ исследованиях сердца, а в настоящее время используется в комплексе с другими режимами. Этот метод дает возможность точно оценить скорость и амплитуду перемещения структур сердца за счет высокой временной разрешающей способности.

Допплеровские режимы
В основе данных режимов визуализации лежит эффект Допплера – изменение частоты под влиянием движения источника, создающего звук, относительно приемника. Назван по имени австрийского физика и астронома Кристиана Андреаса Допплера, который в середине 19 века открыл данный эффект. В УЗ диагностике допплеровские режимы позволяют получить параметры кровотока на основе измерения изменения частоты отраженного сигнала от эритроцитов. На основе полученных данных можно получить информацию о направлении движения кровотока (к датчику или от датчика), скорости кровотока и т. д. Результаты могут быть представлены в нескольких видах: в виде специфических графиков – спектральный допплеровский режим, в виде звука (как правило дополнение к отображению допплеровского спектра), и в виде цветовой кодировки. Нередко допплеровские режимы называют просто термином «допплер».

Спектральный допплеровский режим . На графике (ось X – время, ось Y – скорость потока), разделенном с помощью изолинии (базовой линии) на две части, отображается изменение скорости кровотока (или допплеровского сдвига частот) во времени. Кверху от базовой линии отображаются сигналы от кровотока направленного к датчику, а в нижней – идущих от датчика. Спектральный допплеровский режим бывает постоянно-волновым (CW – continuous wave) и импульсно-волновым (PW – pulse wave). Первый вариант оптимально подходит точного измерения высоких скоростей кровотока, но имеет недостаток – регистрация допплеровского сигнала осуществляется почти по всей протяженности УЗ луча (низкое разрешение по глубине). Второй – для оценки параметров кровотока на заданной глубине в так называемом контрольном объеме; недостатком является ограниченный диапазон измеряемых скоростей.

Цветовое допплеровское картирование (ЦДК) . В режиме ЦДК кровоток направленный к датчику кодируется оттенками красного цвета в зависимости от скорости, от датчика – оттенками синего цвета. Цветовое картирование – очень наглядный и удобный метод, поскольку позволяет визуализировать просвет сосуда и быстро получить наглядную информацию о характере кровотока.

Энергетическое допплеровское картирование (ЭДК, синоним – ангиорежим) . ЭДК – разновидность цветового картирования кровотока, в котором в отличие от ЦДК использует другой компонент отраженного сигнала – данные об амплитуде отраженного допплеровского сигнала. Как правило интенсивность кровотока кодируется оттенками оранжевого цвета. Отдаленно режим ЭДК можно сравнить с рентген-контрастной ангиографией. Одной из особенностей энергетического допплера является то, что он более чувствителен к низким скоростям кровотока, в т. ч. в мелких сосудах, позволяет лучше оценить васкуляризацию паренхиматозных органов и патологических образований. Также данный режим является менее «уголзависимым» по сравнению с ЦДК (меньшее значение имеет угол между направлением допплеровского луча и направлением потока крови).

Основные типы датчиков
На сегодняшний день основными являются три типа датчиков: линейные, конвексные (и их разновидность - микроконвексные), секторные фазированные.



Рис. 1. Линейка конвексных датчиков одного производителя УЗИ-аппаратов



Рис. 2. Линейные датчики для УЗИ



Рис. 3. Фазированные датчики для УЗ-аппарата

Все разнообразие датчиков, представленных на рынке диагностической аппаратуры, является производным от этих трех основных типов.

Настройки В-режима
Для получения и оптимизации изображения в В-режиме можно использовать различные функции настраивать следующие параметры:

  • Freeze – переключение Реальное время/Стоп-кадр,
  • Кинопетля,
  • Глубина сканирования,
  • Фокусная зона (положение и количество),
  • Общее усиление (Gain),
  • усиление по глубине TGC,
  • Автоматическая оптимизация изображения,
  • Метка ориентации на датчике (изменение ориентации изображения),
  • Размер сектора сканирования,
  • Частота сканирования,
  • Тканевое гармоническое изображение (включая изменение частоты гармоники и переключение видов гармоники),
  • Составное многолучевое сканирование,
  • Адаптивная обработка изображения,
  • Трапециевидный режим (виртуальный конвекс),
  • Локальное увеличение Zoom (в т. ч. с повышенной плотностью лучей)

Многие из вышеуказанных функций и параметров сканирования являются универсальными, т. е. применяются и в других режимах сканирования.

Настройки М-режима
В М-режиме используется почти все настройки В-режима, и чаще всего:

  • Общее усиление (Gain),
  • Глубина,
  • частота сканирования

Настройки ЦДК/ЭДК
В этих режимах чаще всего используются следующие настройки:

  • Общее усиление,
  • Размер и положение зоны интереса,
  • Наклон зоны интереса (на линейных датчиках),
  • Частота повторения импульсов (PRF, шкала скоростей)

Настройки спектральных допплеровских режимов
Прежде всего используются:

  • Положение и размер контрольного объема (только для импульсно-волнового допплера),
  • Корректировка допплеровского угла,
  • Наклон допплеровского луча (на линейных датчиках),
  • Базовая линия,
  • Частота повторения импульсов (PRF, шкала скоростей),
  • Автооптимизация,
  • Инверсия спектра


Практическая эксплуатация УЗ сканера

Для упрощения работы на всех современных УЗ сканерах существуют так называемые «предустановки», это совокупность заданных параметров сканирования, оптимальных для проведения какого-либо специализированного исследования (например кардиологического, абдоминального, поверхностных органов и т. п.). Туда же входят специализированные измерения, шаблоны надписей, минииконки области исследования и т. п. Заводские предустановки можно менять или создавать и сохранять свои.

Хотя на сегодняшний день не существует доказанного отрицательного воздействия диагностического ультразвука на ткани и органа, следует помнить о потенциальном риске такого воздействия. Риск механического воздействия отображается на экране прибора в виде механического индекса MI, риск термального повреждения – термальным индексом TI.

Современные УЗ сканеры являются полностью цифровыми, это в том числе позволяет вести базу пациентов, архивировать изображения и видеоклипы (в т. ч. на внешние носители), создавать и редактировать отчеты, подключать УЗ аппарат в обычную компьютерную и DICOM сеть. Во многих странах существуют регламентируюшие документы, обязывающие специалистов протоколировать ход исследования и архивировать полученные изображения.

Не стоит забывать об общих моментах правильной эксплуатации УЗ сканера. В России в условиях нестабильной работы электросетей необходимо подключение прибора (особенно стационарного) через источник бесперебойного питания, характеристики которого нужно уточнять у производителя УЗ аппарата. Ознакомтесь с разделом инструкции, посвященном уходу за вашим прибором. Одна из частых проблем – специалисты забывают чистить воздушные фильтры сканера. Очень важно хранить прилагаемые к прибору диски с программным обеспечением, ключи и коды дополнительных опций.

Заключение
Понимание принципа работы ультразвукового диагностического сканера, знание основ физики ультразвука и его взаимодействия с тканями и органами помогут избежать механического, бездумного использования прибора, и, следовательно, более грамотно подходить к процессу диагностики.

Ковынев А. В.
Эксперт по ультразвуковой диагностической аппаратуре ООО «Частная Медицина» Врач УЗД ГКГ МВД РФ