Железнодорожных станций. Способы освещения. Что такое ПЗС-матрица

Прибор с зарядовой связью (ПЗС) представляет собой ряд простых МДП-структур (металл -- диэлектрик-- полупроводник), сформированные на общей полупроводниковой подложке таким образом, что полоски металлических электродов образуют линейную или матричную регулярную систему, в которой расстояния между соседними электродами достаточно малы (рис.41). Это обстоятельство обусловливает тот факт, что в работе устройства определяющим является взаимовлияние соседних МДП-структур .

Принцип действия ПЗС заключается в следующем. Если к любому металлическому электроду ПЗС приложить отрицательное напряжение, то под действием возникающего электрического поля электроны, являющиеся основными носителями в подложке, уходят от поверхности в глубь полупроводника. У поверхности же образуется обедненная область, которая на энергетической диаграмме представляет собой потенциальную яму для неосновных носителей -- дырок. Попадающие каким-либо образом в эту область дырки притягиваются к границе раздела диэлектрик -- полупроводник и локализуются в узком приповерхностном слое.

Если теперь к соседнему электроду приложить отрицательное напряжение большей амплитуды, то образуется более глубокая потенциальная яма и дырки переходят в нее. Прикладывая к различным электродам ПЗС необходимые управляющие напряжения, можно обеспечить как хранение зарядов в тех или иных приповерхностных областях, так и направленное перемещение зарядов вдоль поверхности (от структуры к структуре). Введение зарядового пакета (запись) может осуществляться либо p-n-переходом, расположенным, например, вблизи крайнего ПЗС элемента (электрод 1 на рис.41), либо светогенерацией. Вывод заряда из системы (считывание) проще всего также осуществить с помощью p-n-перехода (электрод п на рис.41.). Таким образом, ПЗС представляет собой устройство, в котором внешняя информация (электрические или световые сигналы) преобразуется в зарядовые пакеты подвижных носителей, определенным образом размещаемые в приповерхностных областях, а обработка информации осуществляется управляемым перемещением этих пакетов вдоль поверхности. Очевидно, что на основе ПЗС можно строить цифровые и аналоговые системы. Для цифровых систем важен лишь факт наличия или отсутствия заряда дырок в том или ином элементе ПЗС, при аналоговой обработке имеют дело с величинами перемещающихся зарядов.

Устройство и физика работы ПЗС определяют целый ряд очень интересных и полезных (а нередко и уникальных) особенностей этих приборов.

К числу важнейших функциональных особенностей ПЗС относятся возможность хранения, зарядовой информации; возможность направленной передачи зарядов вдоль поверхности полупроводникового кристалла; возможность преобразования светового потока в электрический заряд и последующего его считывания (сканирования). Достоинством ПЗС является малая потребляемая мощность (5--10 мкВт/бит в режиме передачи информации и практически полное отсутствие затрат энергии в режиме хранения), что обусловлено МДП-структурой этих устройств. Простота конфигурации и регулярность системы элементов в ПЗС ведет к тому, что быстродействие этих приборов может быть очень высоким (у специально сконструированных образцов предельные тактовые частоты лежат в гигагерцевом диапазоне) .

Пожалуй, еще более важными являются конструктивно-технологические достоинства ПЗС, основными из которых являются технологическая ясность и простота (малое число фотолитографических, термодиффузионных и эпитаксиальных процессов при изготовлении прибора) -- обязательное условие при создании качественных многоэлементных (с числом элементов 10 4 --10 6) устройств; высокая степень интеграции (превышающая 10 5 элементов на одном кристалле) и высокая плотность упаковки (более 10 5 бит/см 2); малое количество внешних выводов, что является определяющим при построении высоконадежных систем; отсутствие p-n-переходов (немногочисленные p-n-переходы ПЗС выполняют «подсобные» функции и к ним предъявляются достаточно «слабые» требования), что, в частности, открывает широкие возможности для использования наряду с кремнием других полупроводниковых материалов (например, арсенида галлия).

Все эти свойства открывают широкие перспективы для разнообразных применений ПЗС.

Для цифровой техники интересны сдвиговые регистры, оперативные запоминающие устройства, логические схемы. Линии задержки аналоговых сигналов на ПЗС по техническим характеристикам значительно превосходят свои акустические и магнитные аналоги.

В оптоэлектронной технике преобразования изображений ПЗС открывают принципиальные новые возможности для создания безвакуумных полупроводниковых формирователей видеосигналов. Присущее им самосканирование позволяет избавиться от громоздких и ненадежных высоковольтных вакуумных трубок со сканированием электронным лучом. ПЗС являются уникальными аналогами ЭЛТ, позволяющими одновременно с уменьшением массы, габаритных размеров, потребляемой мощности повысить надежность и качество формирователей видеосигналов. Дополнительное достоинство фотоприемников на основе ПЗС заключается в принципиальной возможности использовать разнообразные полупроводниковые материалы, что позволит перекрыть широкую область электромагнитного спектра (включая и ИК-область).

Создание передающих телевизионных камер на основе ПЗС приведет в будущем не только к оснащению техники надежным «электронным глазом» (отметим, что в проекте создания средств искусственного зрения для человека ориентация делается также на ПЗС), но и к действительно широкому использованию средств телевидения в быту.

Если на многоэлементный или матричный ПЗС направить световой поток, несущий изображение, то в объеме полупроводника начнется фотогенерация электронно-дырочных пар. Попадая в обедненную область ПЗС, носители разделяются и в потенциальных ямах накапливаются дырки (причем величина накапливаемого заряда пропорциональна локальной освещенности). По истечении некоторого времени (порядка нескольких миллисекунд), достаточного для восприятия изображения, в матрице ПЗС будет храниться картина зарядовых пакетов, соответствующая распределению освещенностей. При включении тактовых импульсов зарядовые пакеты будут перемещаться к выходному устройству считывания, преобразующему их в электрические сигналы. В результате на выходе получится последовательность импульсов с разной амплитудой, огибающая, которых дает видеосигнал.

На этой основе создаются, учитывающие устройства для фототелеграфа, а также, передающие камеры (вплоть до камер полноформатного цветного телевидения). В будущем ПЗС найдут применение в качестве удобных матричных фотоприемников в сверхпроизводительных оптоэлектронных вычислительных машинах с параллельной обработкой информации.

Появление ПЗС (1969 г.) явилось результатом исследований в области физики и технологии МДП-приборов. Разработка этого нового направления полупроводниковой техники занимаются многие научные коллективы в разных странах мира и уже достигнуты весьма заметные результаты.

Созданы быстродействующие однокристальные ЗУ на ПЗС емкостью 8192, 16384 и 65536 бит с временем выборки 64--200 мкс и скоростью выдачи информации 1--5 МГц; на базе кристаллов емкостью 16 К (килобит) сконструировано ЗУ емкостью 1 Мбит с блочной выборкой по 256 бит. Разработана широкополосная линия задержки аналоговых сигналов емкостью 128 разрядов, предназначенная для использования в системах цветного телевидения; опробован коррелятор на ПЗС, позволяющий одновременно обрабатывать 40 000 дискретных значений сигнала с общей погрешностью менее 1%.

Имеются многочисленные сообщения о начале промышленного выпуска рядом фирм США (в первую очередь Bell и RCA) передающих телекамер с числом элементов разложения 200X200 и 500x500.

В то же время нельзя не заметить, что на пути широкого использования ПЗС стоит еще много нерешенных проблем -- и в первую очередь технологическая: проколы диэлектрической пленки и закоротки электродных шин все еще не позволяют уверенно с высоким процентом выхода получать бездефектные ПЗС достаточно большой информационной емкости. Важнейшей технологической проблемой создания больших ПЗС с однослойной металлизацией является проблема получения узких (2--3 мкм) зазоров между электродами; основной технологический брак в таких структурах -- закоротки. В структурах с многослойными кремниевыми затворами трудно получить высококачественный изолирующий диэлектрик между всеми уровнями поликремния.

В заключение хотелось бы отметить, что создание устройств на приборах с зарядовой связью, в особенности оптоэлектронных, является важным этапом в развитии больших интегральных схем и одним из первых реальных шагов по пути к функциональной микроэлектронике.

2 Физические основы работы и конструкции приборов с зарядовой связью

3 Приборы с зарядовой связью в оптоэлектронике

4 Фотоприемные характеристики ПЗС

5 Строчные (линейные) ФСИ на ПЗС

6 Матричные (плоскостные) ФСИ

7 Перспективы развития ФСИ на ПЗС

Литература p> 1 Общие сведения о приборе с зарядовой связью (ПЗС)

Прибор с зарядовой связью (ПЗС) представляет собой ряд простых МДП-структур (металл - диэлектрик- полупроводник), сформированные на общей полупроводниковой подложке таким образом, что полоски металлических электродов образуют линейную или матричную регулярную систему, в которой расстояния между соседними электродами достаточно малы (рис.1). Это обстоятельство обусловливает тот факт, что в работе устройства определяющим является взаимовлияние соседних МДП-структур .

Рис.1. Структура ПЗС

Принцип действия ПЗС заключается в следующем. Если к любому металлическому электроду ПЗС приложить отрицательное напряжение*), то под действием возникающего электрического поля электроны, являющиеся основными носителями в подложке, уходят от поверхности в глубь полупроводника. У поверхности же образуется обедненная область, которая на энергетической диаграмме представляет собой потенциальную яму для неосновных носителей - дырок. Попадающие каким-либо образом в эту область дырки притягиваются к границе раздела диэлектрик - полупроводник и локализуются в узком приповерхностном слое.

Если теперь к соседнему электроду приложить отрицательное напряжение большей амплитуды, то образуется более глубокая потенциальная яма и дырки переходят в нее. Прикладывая к различным электродам ПЗС необходимые управляющие напряжения, можно обеспечить как хранение зарядов в тех или иных приповерхностных областях, так и направленное перемещение зарядов вдоль поверхности (от структуры к структуре). Введение зарядового пакета (запись) может осуществляться либо p-n-переходом, расположенным, например, вблизи крайнего ПЗС элемента (электрод 1 на рис.1), либо светогенерацией. Вывод заряда из системы (считывание) проще всего также осуществить с помощью p-n-перехода (электрод п на рис.1.). Таким образом, ПЗС представляет собой устройство, в котором внешняя информация (электрические или световые сигналы) преобразуется в зарядовые пакеты подвижных носителей, определенным образом размещаемые в приповерхностных областях, а обработка информации осуществляется управляемым перемещением этих пакетов вдоль поверхности. Очевидно, что на основе ПЗС можно строить цифровые и аналоговые системы. Для цифровых систем важен лишь факт наличия или отсутствия заряда дырок в том или ином элементе ПЗС, при аналоговой обработке имеют дело с величинами перемещающихся зарядов.

Устройство и физика работы ПЗС определяют целый ряд очень интересных и полезных (а нередко и уникальных) особенностей этих приборов.

К числу важнейших функциональных особенностей ПЗС относятся возможность хранения, зарядовой информации; возможность направленной передачи зарядов вдоль поверхности полупроводникового кристалла; возможность преобразования светового потока в электрический заряд и последующего его считывания (сканирования). Достоинством ПЗС является малая потребляемая мощность (5-10 мкВт/бит в режиме передачи информации и практически полное отсутствие затрат энергии в режиме хранения), что обусловлено МДП-структурой этих устройств. Простота конфигурации и регулярность системы элементов в ПЗС ведет к тому, что быстродействие этих приборов может быть очень высоким (у специально сконструированных образцов предельные тактовые частоты лежат в гигагерцевом диапазоне).

Пожалуй, еще более важными являются конструктивно-технологические достоинства ПЗС, основными из которых являются технологическая ясность и простота (малое число фотолитографических, термодиффузионных и эпитаксиальных процессов при изготовлении прибора) - обязательное условие при создании качественных многоэлементных (с числом элементов 104-106) устройств; высокая степень интеграции (превышающая 105 элементов на одном кристалле) и высокая плотность упаковки (более 105 бит/см2); малое количество внешних выводов, что является определяющим при построении высоконадежных систем; отсутствие p-n-переходов (немногочисленные p-n-переходы ПЗС выполняют «подсобные» функции и к ним предъявляются достаточно «слабые» требования), что, в частности, открывает широкие возможности для использования наряду с кремнием других полупроводниковых материалов (например, арсенида галлия).

Все эти свойства открывают широкие перспективы для разнообразных применений ПЗС.

Для цифровой техники интересны сдвиговые регистры, оперативные запоминающие устройства, логические схемы. Линии задержки аналоговых сигналов на ПЗС по техническим характеристикам значительно превосходят свои акустические и магнитные аналоги.

В оптоэлектронной технике преобразования изображений ПЗС открывают принципиальные новые возможности для создания безвакуумных полупроводниковых формирователей видеосигналов. Присущее им самосканирование позволяет избавиться от громоздких и ненадежных высоковольтных вакуумных трубок со сканированием электронным лучом. ПЗС являются уникальными аналогами ЭЛТ, позволяющими одновременно с уменьшением массы, габаритных размеров, потребляемой мощности повысить надежность и качество формирователей видеосигналов. Дополнительное достоинство фотоприемников на основе ПЗС заключается в принципиальной возможности использовать разнообразные полупроводниковые материалы, что позволит перекрыть широкую область электромагнитного спектра (включая и ИК область).

Создание передающих телевизионных камер на основе ПЗС приведет в будущем не только к оснащению техники надежным «электронным глазом» (отметим, что в проекте создания средств искусственного зрения для человека ориентация делается также на ПЗС), но и к действительно широкому использованию средств телевидения в быту.

Если на многоэлементный или матричный ПЗС направить световой поток, несущий изображение, то в объеме полупроводника начнется фотогенерация электронно-дырочных пар. Попадая в обедненную область ПЗС, носители разделяются и в потенциальных ямах накапливаются дырки (причем величина накапливаемого заряда пропорциональна локальной освещенности). По истечении некоторого времени (порядка нескольких миллисекунд), достаточного для восприятия изображения, в матрице ПЗС будет храниться картина зарядовых пакетов, соответствующая распределению освещенностей. При включении тактовых импульсов зарядовые пакеты будут перемещаться к выходному устройству считывания, преобразующему их в электрические сигналы. В результате на выходе получится последовательность импульсов с разной амплитудой, огибающая, которых дает видеосигнал.

Изобретён У. Бойлом (W. Boyle) и Дж. Смитом (G. Smith) в 1969 году. В 2009 году создатели ПЗС-матрицы были награждены Нобелевской премией по физике.

ПЗС-ма́трица (сокр. от «п рибор с з арядовой с вязью») или CCD-ма́трица (сокр. от англ. CCD , «Charge-Coupled Device») - специализированная аналоговая интегральная микросхема, состоящая из светочувствительных фотодиодов, выполненная на основе кремния, использующая технологию ПЗС - приборов с зарядовой связью.

Приборы с зарядовой связью начали свою жизнь как устройства памяти, в которых можно было только поместить заряд во входной регистр устройства. Однако способность элемента памяти устройства получить заряд благодаря фотоэлектрическому эффекту сделала данное применение ПЗС устройств основным.

(ПЗС) - интегральная схема, представляющая собой совокупность МДП-структур, сформированных на общей полупроводниковой подложке т. о., что полоски электродов образуют линейную или матричную регулярную структуру. Расстояния между соседними электродами столь малы, что существенным становится их взаимовлияние вследствие перекрытия областей пространственного заряда вблизи краёв соседних электродов (рис. 4.7).

Рис. 4.7. Структура прибора с зарядовой связью (фрагмент): 1 - кристалл кремния; 2 - вход - выход; з - металлические электроды; 4 - диэлектрик.

В ПЗС осуществляется направленная передача зарядов от электрода к электроду путём манипуляции электрическими напряжениями на этих электродах. Заряды в ПЗС вводятся электрическим (инжекцией) или фотоэлектрическим способами. Основные функциональные назначения фоточувствительных ПЗС - преобразование оптических изображений в последовательность электрических импульсов (формирование видеосигнала), а также хранение и обработка цифровой и аналоговой информации. Используются термины "прибор с переносом заряда" (ППЗ) и "фоточувствительный прибор с зарядовой связью" (ФПЗС). ПЗС изготовляют на основе монокристаллического кремния. Для этого на поверхности кремниевой пластины методом термического окисления создаётся тонкая (0,1-0,15 мкм) диэлектрическая плёнка диоксида кремния. Этот процесс осуществляется т. о., чтобы обеспечить совершенство границы раздела полупроводник - диэлектрик и мин. концентрацию рекомбинационных центров на границе. Электроды отд. МДП-элементов производятся из алюминия, их длина составляет 3-7 мкм, зазор между электродами 0,2-3 мкм. Типичное число МДП элементов 500-2000 в линейном и 10 4 – 10 6 в матричном ПЗС; площадь пластины ~ 1см 2 . Под крайними электродами каждой строки изготовляют p- n переходы, предназначенные для ввода - вывода порции зарядов (зарядовых пакетов) электрич. способом (инжекция p - n -переходом). При фотоэлектрич. вводе зарядовых пакетов ПЗС освещают с фронтальной или тыльной стороны. При фронтальном освещении во избежание затеняющего действия электродов алюминий обычно заменяют плёнками сильнолегиров. поликристаллич. кремния (поликремния), прозрачного в видимой и ближней ИК-облас-тях спектра. Принцип действия ПЗС на примере фрагмента строки ФПЗС, управляемой трёхтактовой (трёхфазной) схемой, иллюстрируется на рис. 4.8.

В течение такта I (восприятие, накопление и хранение видеоинформации) к электродам 1, 4, 7 прикладывается т. н. напряжение хранения U xp , оттесняющее осн. носители - дырки в случае кремния р-типа - вглубь полупроводника и образующее обеднённые слои глубиной 0,5-2 мкм - потенц. ямы для электронов. Освещение поверхности ФПЗС порождает в объёме кремния избыточные электронно-дырочные пары, при этом электроны стягиваются в потенц. ямы, локализуются в тонком (0,01 мкм) приповерхностном слое под электродами 1, 4, 7, образуя сигнальные зарядовые пакеты. Величина заряда в каждом пакете пропорциональна экспозиции поверхности вблизи данного электрода. В хорошо сформированных МДП-структурах образующиеся заряды вблизи электродов могут относительно долго сохраняться, однако постепенно вследствие генерации носителей заряда примесными центрами, дефектами в объёме или на границе раздела (темновой ток) эти заряды будут накапливаться в потенц. ямах, пока не превысят сигнальные заряды и даже полностью заполнят ямы.

Во время такта II (перенос зарядов) к электродам 2, 5, 8 и т. д. прикладывается т. н. напряжение считывания U с, более высокое, чем напряжение хранения U xp . Поэтому под электродами 2, 5 и 8 возникают более глубокие потенц. ямы, чем под электронами 1, 4 и 7, и вследствие близости электродов 1 и 2, 4 и 5, 7 и 8 барьеры между ними исчезают и электроны перетекают в соседние, более глубокие потенц. ямы.

Во время такта III напряжение на электродах 2, 5, 8 снижается до U xp, а с электродов 1, 4, 7 снимается напряжение считывания U с. Т. о. осуществляется перенос всех зарядовых пакетов вдоль строки ПЗС вправо на один шаг, равный расстоянию между соседними электродами.

Во всё время работы на электродах, непосредственно не подключённых к потенциалам U xp или U с поддерживается небольшое напряжение смещения U см (1-3 В), обеспечивающее обеднение носителями заряда всей поверхности полупроводника и ослабление на ней рекомбинационных эффектов.

Повторяя процесс коммутации напряжений многократно, выводят через крайний p -n переход последовательно все зарядовые пакеты, возбуждённые, напр., светом в строке. При этом в выходной цепи возникают импульсы напряжения, пропорциональные величине заряда данного пакета. Картина освещённости трансформируется в поверхностный зарядовый рельеф, к-рый после продвижения вдоль всей строки преобразуется в последовательность электрич. импульсов. Чем больше число элементов в строке или матрице (число элементов разложения), тем точнее воспринимается изображение.На рис 4.9. приведено устройство одного субпикселя ПЗС.

Рис 4.9. Схема субпикселей ПЗС-матрицы с карманом n-типа (на примере красного фотодетектора)

1 - фотоны света, прошедшие через объектив фотоаппарата;
2 - микролинза субпикселя;
3 - R - красный светофильтр субпикселя, фрагмент фильтра Байера;
4 - прозрачный электрод из поликристаллического кремния или сплава индия и оксида олова;
5 - оксид кремния;
6 - кремниевый канал n-типа: зона генерации носителей - зона внутреннего фотоэффекта;
7 - зона потенциальной ямы (карман n-типа), где собираются электроны из зоны генерации носителей заряда;
8 - кремниевая подложка p-типа.

Для восприятия цветных изображений используют один из двух способов: разделение оптич. потока с помощью призмы на красный, зелёный, синий, восприятие каждого из них специальным ФПЗС - кристаллом, смешение импульсов от всех трёх кристаллов в единый видеосигнал; создание на поверхности ФПЗС плёночного штрихового или мозаичного кодирующего светофильтра, образующего растр из разноцветных триад.

Способы освещения. Для освещения станций применяют более двадцати вариантов осветительных установок, которые различаются как по назначению, так и конструктивному исполнению. В них могут быть использованы разные опорные конструкции, типы осветительных приборов и способы размещения последних. По конструктивному исполнению установки можно классифицировать по трем основным признакам: на отдельно стоящих опорах, на гибких поперечинах, на жестких поперечинах или порталах.

Осветительные установки на отдельно стоящих опорах выполняют в виде единично устанавливаемых светильников или прожекторов, чаще всего располагаемых группами. Светильники на опорах высотой 6-7 м применяют в основном для освещения разъездов, обгонных пунктов, малых промежуточных станций, пассажирских платформ, путей надвига, а также вытяжек на сортировочных и участковых станциях. Очень часто на малых раздельных пунктах для подвески светильников применяют опоры воздушных линий электропередачи или консольные опоры контактной сети. Однако такие осветительные установки не позволяют достигать высокого качества освещения, так как из-за сплошного затенения первого же междупутья коэффициент затенения γ м составляет от 0,95 до 0,99. Но поскольку зрительные работы на указанных раздельных пунктах и путях выполняют обычно только со стороны осветительной установки, такой высокий γ мп можно все-таки считать приемлемым. Вместе с тем на путях надвига и вытяжках шаг подвески осветительных приборов приходится определять с учетом коэффициента затенения междувагонного пространства γ мп.



Наиболее широко в установках на отдельно стоящих опорах применяют подвесные светильники СПП, СППР, СЗПР, СЗП и консольные СКЗР и РКУ с лампами ДРЛ-125 и ДРЛ-250.

Для установки прожекторов используют типовые мачты высотой 15, 21, 28, 35 и 45 м. Такой способ освещения практикуется на опорных промежуточных, участковых и сортировочных станциях неэлектрифицированных участков железных дорог. Основной его недостаток заключается в принципиальной невозможности создания хорошего освещения по условиям затенения междупутий. По этой причине мачты высотой 15 и 21 м для освещения станционных парков в настоящее время не применяют. Приемлемое качество освещения достигается при использовании мачт высотой 28 м, когда γ мп =0,7-0,72 (см. рис. 6.13). Еще лучшими в этом отношении являются мачты высотой 35 м с удлиненной площадкой (рис. 6.14), которые позволяют снизить коэффициент затенения междупутий до 0,3-0,35.

На эксплуатируемых станциях при отсутствии широких междупутий могут быть применены мачты высотой 45 м. Устанавливают их за пределами путевого развития, но благодаря большой высоте (более чем десятикратной по сравнению с высотой вагона) они обеспечивают некоторое снижение γ мп.

Рис.6.14. Схема осветительной установки с применением

мачт высотой ≥ 35 м

На мачтах для обслуживания прожекторов устраивают площадки различных типов, а в стволах мачт – лестницы для удобного и безопасного подъема на площадку.

Иногда прожекторные осветительные установки на мачтах применяют на станциях электрифицированных линий. Для этого вместо каждой четвертой или пятой опоры гибких поперечин устанавливают мачту высотой 28 м (в том числе с портальным основанием), оборудованную устройствами для подвески гибких поперечин контактной сети (рис. 6.13 – пунктир).

Для установки на мачтах чаще всего используют прожекторы ПЗС-35, ПЗС-45, ПСМ-50-1, ПНК-2000-1, ПЗР-250, ПЗР-400. В качестве источников света применяют лампы ДРИ-250, ДРИ-500, ДРИ-700, Г220-1000, КГ220-2000-4.

Наилучшим способом освещения территорий путевого развития станций является установка осветительных приборов над каждым междупутьем. Этой цели удовлетворяет подвеска осветительных приборов на гибких конструкциях, аналогичных используемым для подвески контактной сети. Светильники при этом могут быть размещены как поперек парка путей (на гибких поперечинах), так и вдоль над осями путей или междупутий (на цепной подвеске). В том и другом случаях, как правило, применяют светильники с несимметричным светораспределением при высоте их установки 6-7 м над уровнем земли (рис. 6.15).

Осветительные приборы, подвешенные на гибких поперечинах, обслуживают с передвигающихся по поперечине тележек канатного типа. Цепные подвески обслуживают с телескопической автомобильной вышки или с лейтера.

Несмотря на хорошее качество освещения (γ мп = 0,28-0,3) применение гибких поперечин со светильниками весьма ограничено из-за неудобства их обслуживания. Поэтому их рекомендуют только для существующих станций, где в парках с числом путей более 10-12 отсутствуют широкие междупутья и нельзя применить другие способы освещения. Цепные подвески применяют, как правило, для освещения пассажирских платформ на электрифицированных участках железных дорог.


Рис.6.15. Схема осветительной установки с размещением светильников

на гибких конструкциях

Наиболее эффективным способом освещения является установка прожекторов на жестких поперечных конструкциях над каждым междупутьем. К таким конструкциям относят специальные порталы высотой 28 м, используемые на неэлектрифицированных станциях или парках (рис. 6.16).


Рис. 6.16. Схема осветительной установки с размещением светильников

на порталах высотой 28 м

На электрифицированных станциях осветительные приборы устанавливают на жестких поперечинах высотой 12 м (рис. 6.17). Жесткая поперечина служит совмещенной опорной конструкцией для подвески контактной сети и установки осветительных приборов. Для удобства обслуживания последних верхнюю часть ригеля жесткой поперечины или портала оборудуют настилом и перилами, а для удобства подъема конструкцию оснащают стационарными лестницами.

Жесткая поперечина служит совмещенной опорной конструкцией для подвески контактной сети и установки осветительных приборов. Для удобства обслуживания последних верхнюю часть ригеля жесткой поперечины или портала оборудуют настилом и перилами, а для удобства подъема конструкцию оснащают стационарными лестницами.


Рис.6.17. Размещение прожекторов на совмещенной опорной

конструкции

Качество освещения по условиям затенения в осветительных установках, расположенных на порталах и жестких поперечинах, оценивают по коэффициенту затенения междупутий (γ мп = 0,22-0,26). Наиболее широко в этих установках применяют прожекторы ПЗС-35, ПЗС-45, ПСМ-50-1, ПКН-2000-1 с лампами накаливания мощностью от 200 до 1000 Вт, а также лампами ДРЛ-400, ДРЛ-700, ДРИ-250, ДРИ-500, КГ220-2000-4.

Выбор способа освещения. При выборе способа освещения в первую очередь исходят из технологических характеристик станций. К ним относят назначение парка путей или станции в целом; характер путевого развития, который определяется наличием уширенных (более 5,3 м) междупутий и их взаимным расположением; перспективу введения электрической тяги. На основании анализа технологических характеристик выбирают вид конструкции для размещения осветительных приборов, которая в свою очередь определяет способ освещения и все основные его показатели – светотехнические и эксплуатационные.

Опыт проектирования и эксплуатации осветительных установок станций подтверждает, что по всем показателям наилучшим способом освещения является ряд прожекторов, установленных на жестких опорах контактной сети (рис. 6.15) для электрифицированных станций и на специальных порталах высотой 28-30 м для неэлектрифицированных станций (рис. 6.16). Гибкие поперечины для подвески осветительных приборов (рис. 6.15) применяют весьма ограниченно. Этот способ освещения рекомендуется использовать в случаях, когда отсутствуют широкие междупутья и имеется возможность обслуживания светильников с телескопической автомобильной вышки из междупутий (на технических пассажирских станциях).

При использовании для осветительных установок мачт с прожекторами наилучшим вариантом считаются 35-метровые мачты с удлиненными площадками (рис. 6.14). На мачтах высотой 28 м (рис. 6.13), кроме прожекторов, в последнее время устанавливают светильники ИТЖ с галогенными лампами накаливания и СЖКс-20 с ксеноновыми лампами ДКсТ-20000. Однако последние имеют ряд светотехнических и экономических недостатков. Светильники ИТЖ более экономичны и обладают хорошими эксплуатационными качествами. Так, светильник ИТЖ-2000 для обеспечения Е норм = 5 лк можно устанавливать над каждым междупутьем станции на высоте 11-12 м с расстоянием между соседними светильниками около 100 м.

ПРИБОР С ЗАРЯДОВОЙ СВЯЗЬЮ (ПЗС) - интегральная схема , представляющая собой совокупность МДП-структур , сформированных на общей полупроводниковой подложке т. о., что полоски электродов образуют линейную или матричную регулярную структуру. Расстояния между соседними электродами столь малы, что существенным становится их взаимовлияние вследствие перекрытия областей пространственного вблизи краёв соседних электродов (рис. 1).

Рис. 1. Структура прибора с зарядовой связью (фрагмент): 1 - кристалл кремния; 2 - вход - выход; з - металлические электроды; 4 - .

Изобретён У. Бойлом (W. Boyle) и Дж. Смитом (G. Smith) в 1969. В ПЗС осуществляется направленная передача зарядов от электрода к электроду путём манипуляции электрич. на этих электродах. Заряды в ПЗС вводятся электрич. (инжекцией) или фотоэлектрич. способами. Осн. функциональные назначения фото-чувствит. ПЗС - преобразование оптич. изображений в последовательность электрич. импульсов (формирование видеосигнала), а также хранение и обработка цифровой и аналоговой информации. Используются термины "прибор с переносом заряда" (ППЗ) и "фоточувствит. прибор с зарядовой связью" (ФПЗС). ПЗС изготовляют на основе монокристаллич. кремния. Для этого на поверхности кремниевой пластины методом термич. окисления создаётся тонкая (0,1-0,15 мкм) диэлектрич. плёнка диоксида кремния. Этот процесс осуществляется т. о., чтобы обеспечить совершенство границы раздела - диэлектрик и мин. концентрацию рекомбинац. центров на границе. Электроды отд. МДП-элементов производятся из алюминия, их длина составляет 3-7 мкм, зазор между электродами 0,2-3 мкм. Типичное число МДП-элементов 500-2000 в линейном и в матричном ПЗС; площадь пластины Под крайними электродами каждой строки изготовляют p - n - переходы , предназначенные для ввода - вывода порции зарядов (зарядовых пакетов) электрич. способом ( p - n -переходом). При фотоэлектрич. вводе зарядовых пакетов ПЗС освещают с фронтальной или тыльной стороны. При фронтальном освещении во избежание затеняющего действия электродов алюминий обычно заменяют плёнками сильнолегиров. поликристаллич. кремния (поликремния), прозрачного в видимой и ближней ИК-облас-тях спектра.

Принцип действия ПЗС на примере фрагмента строки ФПЗС, управляемой трёхтактовой (трёхфазной) схемой, иллюстрируется на рис. 2. В течение такта I (восприятие, накопление и хранение видеоинформации) к

электродам 1, 4, 7 прикладывается т. н. напряжение хранения U xp , оттесняющее осн. носители - дырки в случае кремния р-типа - в глубь полупроводника и образующее обеднённые слои глубиной 0,5-2 мкм - потенц. ямы для электронов. Освещение поверхности ФПЗС порождает в объёме кремния избыточные электронно-дырочные пары, при этом электроны стягиваются в потенц. ямы, локализуются в тонком (0,01 мкм) приповерхностном слое под электродами 1, 4 , 7, образуя сигнальные зарядовые пакеты.


Величина заряда в каждом пакете пропорциональна экспозиции поверхности вблизи данного электрода. В хорошо сформированных МДП-структурах образующиеся заряды вблизи электродов могут относительно долго сохраняться, однако постепенно вследствие генерации носителей заряда примесными центрами, дефектами в объёме или на границе раздела (темновой ток) эти заряды будут накапливаться в потенц. ямах, пока не превысят сигнальные заряды и даже полностью заполнят ямы.

Во время такта II (перенос зарядов) к электродам 2, 5, 8 и т. д. прикладывается т. н. напряжение считывания, более высокое, чем напряжение хранения . Поэтому под электродами 2, 5 и 8 возникают более глубокие потенц. ямы, чем под электронами 1, 4 и 7 , и вследствие близости электродов 1 и 2, 4 и 5 , 7 и 8 барьеры между ними исчезают и электроны перетекают в соседние, более глубокие потенц. ямы.

Во время такта III напряжение на электродах 2, 5, 8 снижается до а с электродов 1, 4, 7 снимается.

Т. о. осуществляется перенос всех зарядовых пакетов вдоль строки ПЗС вправо на один шаг, равный расстоянию между соседними электродами.

Во всё время работы на электродах, непосредственно не подключённых к потенциалам илиподдерживается небольшое напряжение смещения(1-3 В), обеспечивающее обеднение носителями заряда всей поверхности полупроводника и ослабление на ней реком-бинац. эффектов.

Повторяя процесс коммутации напряжений многократно, выводят через крайний r - h-переход последовательно все зарядовые пакеты, возбуждённые, напр., светом в строке. При этом в выходной цепи возникают импульсы напряжения, пропорциональные величине заряда данногв пакета. Картина освещённости трансформируется в поверхностный зарядовый рельеф, к-рый после продвижения вдоль всей строки преобразуется в последовательность электрич. импульсов. Чем больше число элементов в строке или матрице (число элементов разложения), тем точнее воспринимается изображение. При небольшом числе переносов увеличиваются ре-комбинац. потери, происходит неполная передача зарядового пакета от одного электрода к соседнему и усиливаются обусловленные этим искажением информации. Чтобы избежать искажений накопленного видеосигнала из-за продолжающегося во время переноса освещения, на кристалле ФПЗС создают пространственно разделённые области восприятия - накопления и хранения - считывания, причём в первых обеспечивают макс. фоточувствительность, а вторые, наоборот, экранируют от света. В линейном ФПЗС (рис. 3, а) заряды, накопленные в строке 1 за один цикл, передаются в регистр 2 (из чётных элементов) и в регистр 3 (из нечётных). В то время, как по этим регистрам информация передаётся через выход 4 в схему объединения сигналов 5, в строке 1 накапливается новый видеокадр. В ФПЗС с кадровым переносом (рис. 3, б )информация, воспринятая матрицей накопления 7, быстро "сбрасывается" в матрицу хранения 2 , из к-рой последовательно считывается ПЗС-регистром 3; в это же время матрица 1 накапливает новый кадр.



Осн. параметры ПЗС: амплитуды управляющих импульсов 5-20 В), относит. потери заряда при одном переносе макс. тактовая частота (= 10-100 МГц), макс. и мин. зарядового пакета (50

Ди-намич. диапазон (D = 20 lg 60-80 дБ), плотность темнового тока Для характеристики ФПЗС кроме перечисленных выше параметров указываются спектральный диапазон (Dl = 0,4-1,1 мкм), фоточувствительность (= 0,1-0,5 А/Вт), макс. и мин. экспозиции

разрешающая способность (r = 10-50 линий/мм). Кроме ПЗС простейшей структуры (рис. 1) получили распространение и др. их разновидности, в частности приборы с поликремниевыми перекрывающимися электродами (рис. 4, а), в к-рых обеспечиваются активное фотовоздействие на всю поверхность полупроводника и малый зазор между электродами, и приборы с асимметрией приповерхностных свойств (напр., слоем диэлектрика перем. толщины - рис. 4, б) , работающие в двухтакто-вом режиме. Принципиально отлична структура ПЗС с объёмным каналом (рис. 4, в), образованным примесей. Накопление, хранение, перенос заряда происходят в объёме полупроводника, где меньше, чем на поверхности, рекомбинац. центров и выше подвижность носителей. Следствием этого является увеличение на порядок значенияи уменьшение e по сравнению со всеми разновидностями ПЗС с поверхностным каналом.



Для восприятия цветных изображений используют один из двух способов: разделение оптич. потока с помощью призмы на красный, зелёный, синий, восприятие каждого из них специальным ФПЗС - кристаллом, смешение импульсов от всех трёх кристаллов в единый видеосигнал; создание на поверхности ФПЗС плёночного штрихового или мозаичного кодирующего светофильтра, образующего растр из разноцветных триад.

Для восприятия изображений в ИК-области спектра развиваются три направления: легирование кремния примесями (In, Ga, Те и др.) и использование примесного ; разработка ФПЗС на узкозонных полупроводниковых соединениях (напр., на In, Sb для диапазона Dl = 3-5 мкм); создание гибридных структур, сочетающих фоточувствит. мишень, напр. на кристалле HgCdTe, и кремниевые ПЗС-регистры, обеспечивающие считывание информации, накапливаемой в мишени.

Осн. отличит, особенностью ПЗС как изделия микроэлектроники является возможность вводить в кристалл и хранить без искажения большие массивы цифровой (в т. ч. многоуровневой) или аналоговой информации, использовать электрич. и оптич. способы для ввода информации, осуществлять направленное распространение (в т. ч. циркуляцию) информации в кристалле и неразрушающий доступ к ней, проводить как последовательный, так и параллельный принцип обработки информации. От вакуумных приёмников изображений (видиконов )ФПЗС, кроме того, отличается жёстким геом. растром, позволяющим фиксировать координаты элементов разложения и исключить дисторсию и др. искажения растра, долговечностью, меньшей потребляемой мощностью, отсутствием микрофонного эффекта и выгорания под действием сильной засветки, нечувствительностью к магн. и электрич. полям.

Осн. применение ПЗС находят в качестве безвакуумного твердотельного аналога видикона для восприятия и обработки видеоинформации в телевидении, устройствах техн. зрения, видеокамерах, электронных фотоаппаратах. Значительно меньше ПЗС используют в цифровой технике в качестве запоминающих устройств, регистров, арифметико-логич. устройств (см. Логические схемы, Памяти устройства )и в аналоговой технике в качестве , фильтров и т. п.

Лит.: Секен К., Томсет М., Приборы с переносом заряда, пер. с англ., М., 1978; Носов Ю. Р., Шилин В. А., Основы приборов с зарядовой связью, М., 1986; Пресс Ф. П., Фоточувствительные микросхемы с зарядовой связью, в кн.: Итоги науки и техники. Сер. Электроника, т. 18, М., 1986. Ю. Р. Носов .