Световой поток светодиодной лампы 15 вт. Разоблачаем мировой заговор или как измерить световой поток светодиодов на коленке

Даже не самые продвинутые пользователи бытовых приборов сегодня присматриваются к светодиодным светильникам с целью заменить ими морально устаревшие . Но потребителям, привыкшим ориентироваться на единственный параметр источника света – мощность, технические характеристики светодиодных ламп кажутся слишком мудреными. Недобросовестные производители пользуются этим, не указывают на упаковке все необходимые параметры. А среди ЛЕД-светильников встречаются сложные электронные приборы. Они включают в свой состав блок питания на микросхемах, способны излучать световые волны в широком диапазоне, три цвета RGB.

Световой поток светодиодных ламп – это важный критерий выбора прибора. Он может отличаться у разных изготовителей для источников света с одинаковой заявленной потребляемой мощностью. Именно этот параметр характеризует возможность прибора осветить пространство.

Что такое световой поток?

Сила свечения каждого отдельного источника света зависит от скорости излучения электромагнитных волн – носителей световой энергии.

Человеческий глаз устроен таким образом, что опознает только определенный ограниченный участок спектра излучения. Лучше всего воспринимаются световые волны длиной 555 нм – такой свет имеет желто-зеленый оттенок, хуже всего опознается красный свет (длина волны 632 нм). А фиолетовые и красные оттенки излучения не опознаются глазами людей совсем. Поэтому при определении светового потока все длины волн, излучаемые источником света, суммируются с учетом кривой восприимчивости глаза. В качестве характеристики светодиодных светильников используется мощность светового потока. Она измеряется в люменах. Световой поток, излучаемый точечным изотропным источником при силе света 1 кандела, – это 1 люмен.

Таким образом, оценивая мощность светодиодной лампы, нужно уточнять о каком параметре идет речь. То ли о размере потребляемой энергии, то ли о производительности светильника.

Что такое световая отдача прибора освещения?

Этот параметр равен световому потоку лампы при потреблении ею единицы мощности электроэнергии. Измеряется в люменах на 1 ватт (Лм/Вт). Принимается, что излучаемый световой поток распределяется равномерно на каждый ватт потребляемой энергии.

Компактные люминесцентные светильники и светодиоды привлекают в первую очередь своей высокой экономичностью. Эту желанную экономию энергии обеспечивает, вопреки ожиданию, не маленькая потребляемая мощность, а непосредственно световая отдача прибора. Чем эта величина больше, а мощность лампочки аналогична, тем экономичнее прибор. Поэтому лампочки накаливания сдают свои позиции, уступая место более прогрессивным светодиодным светильникам, у которых световая отдача существенно выше.


Максимум световой эффективности может быть достигнут при излучении с длиной волны 555 нм. Это значение для монохроматического света при идеальном преобразовании из электрической энергии теоретически позволяет получить максимальную световую отдачу, равную 683,002 Лм/Вт.

Для лампочек с вольфрамовой нитью характера очень малая световая отдача, так как цвет их излучения стремится в сторону инфракрасных оттенков.

Данные о светоотдаче разных типов ламп отражены в таблице.

Тип источника света Световой поток (лм) Световая отдача (лм/вт)
Лампа накаливания 40 Вт 420 10
— \\ — 60 Вт 710 11
— \\ — 75 Вт 935 12
— \\ — 100 Вт 1350 13
— \\ — 200 Вт 2500 14
Галогеновая лампа 230В 42 Вт 625 15
— \\ — 230В 70 Вт 1170 17
IRC-галогеновая лампа 12В 1700 26
люминесцентная лампа 40 Вт 2000 50
— \\ — 200 Вт 11400 57
Газоразрядная лампа 250 Вт 19500 78
— \\ — 2000 Вт 210000 105
Автомобильный ксенон 35Вт 3000-3400 93
Светодиод 40-80 Вт 6000 115
Светодиодная лампа (цокольная) 860 86
Солнце 93
Идеальный источник света 683,002

Световой поток светодиодных ламп: таблица соответствия мощностей разных типов приборов

Чтобы грамотно заменить лампочку Ильича современным светодиодным аналогом, нужно отталкиваться от такого параметра, как освещенность (она измеряется в люках на единицу площади). Это сложная характеристика, поскольку освещенность отдельных участков помещения неодинакова. Даже в непосредственной близости от светодиодного светильника освещенность зависит от угла рассеивания.



Но обычные пользователи не стремятся вникать во все эти тонкости и подбирают осветительный прибор, ориентируясь на мощность лампы – этот параметр знаком всем потребителям. Для простоты выбора существует таблица сравнения мощности ламп накаливания и светодиодных аналогов. Для полноты картины в нее внесены данные и об энергосберегающих лампах.

Световой поток, Светодиодная лампа, Вт Лампа накаливания, Энергосберегающая лампа, Вт
~ 250 2-3 20 5-7
~ 400 4-5 40 10-13
~ 700 6-10 60 15-16
~ 900 10-12 75 18-20
~ 1200 12-15 100 25-30
~ 1800 18-20 150 40-50
~ 2500 25-30 200 60-80

Нужно учитывать, что данные, приведенные в таблице, только ориентировочные. Нельзя взять и заменить лампу накаливания, на которой указано – 60 Вт, на светодиод с обозначением – 7 Вт, и быть уверенным, что освещенность помещения не изменится.

Часто встречается заблуждение об эквивалентности светодиода мощностью 10 Вт лампе накаливания мощностью 100 Вт. Но один ватт уходит на нагрев драйвера, 20% мощности поглощает непрозрачная колба светодиодной лампочки. Остается только 7 полезных ватт из 10, они дают в среднем мощность светового потока в среднем 700 – 800 Люменов. Таким образом, нужно ориентироваться на соответствие десяти ватт светодиодного светильника семидесяти пяти ваттам лампочки накаливания. Матовая поверхность колбы лампочек, часто используемых в люстрах без плафонов, защищает глаза от слепящего света. Так можно проверить добросовестность производителя. Если на упаковке светодиода со световым потоком 800 лм указана потребляемая мощность 10 Вт, то от покупки такого прибора лучше отказаться.

Таблица сравнения лампы накаливания 60 Вт и светодиодного светильника 9 Вт по основным параметрам.


Чтобы заменить стандартную стоваттную лампочку с вольфрамовой нитью, потребуется 2 светодиодных светильника на 650 лм. Таблицей стоит пользоваться, исходя из информации на упаковке о силе светового потока, единицей измерения которого служит Люмен. Дело в конструктивных особенностях светодиодных светильников. Чем больше их яркость, тем более массивной должны быть конструкция их радиатора.

Энергосберегающие лампы отличаются наибольшей эффективностью при непрерывном функционировании. От частых включений и выключений они потратят на разогрев большое количество энергии. Кроме того, по несколько секунд при включении могут работать на половинной мощности.

При замене галогенных лампочек задача усложняется. Чтобы заменить прибор, работающий от сети 12 В, нужно пользоваться другой таблицей, составленной с поправкой, зависящей от типа лампы.

Световой поток люминесцентных ламп приближен к аналогичному параметру светодиодов такой же мощности.

Особенности выбора светильников для размещения снаружи здания

Для уличного освещения используются мощные светодиодные светильники. На данный момент это самый популярный вариант источника света для наружного использования.



В таблице представлены параметры уличных ламп от различных производителей.

Коэффициент мощности светодиодных светильников

Этот параметр имеет отношение больше к блоку питания светильника. Коэффициент мощности (косинус фи) отражает КПД источника света. Как определить коэффициент мощности для светодиодной лампы? Эта характеристика определяется как отношение активной полезной мощности к полной.

Коэффициент мощности принимает значение от 0 до 1:

  • «0» – полезная работа не совершается.
  • «1» – вся энергия расходуется на совершение полезной работы.

Чем выше коэффициент мощности, тем меньше потери электроэнергии.

Многие годы лампы накаливания были единственным источником искусственного света. В последнее время из-за малой эффективности этих видов освещения происходит их постепенная замена другими источниками света, например, светодиодными.

Однако у ламп накаливания есть свои преимущества. Их дешевизна, наличие непрерывного спектра излучения, наиболее близкое к естественному солнечному свету, приводит к тому, что их продолжают использовать во многих случаях. Для правильной оценки возможности использования ламп накаливания и возможности их замены необходимо измерять и учитывать основные характеристики ламп накаливания.

В процессе измерений светильник помещается в центр специальной сферы. В её стенке имеется фотоприемник с фильтром, полоса пропускания которого соответствует спектральной чувствительности глаза человека. Сигнал на выходе фотоэлемента зависит от его освещенности и пропорционален световому потоку источника.

Сравнивая сигналы фотоэлемента и предварительно полученного значения при использовании эталонного источника света, определяют световой поток исследуемого светильника.

После измерения этого показателя можно определить величину светоотдачи лампы накаливания. Эта величина показывает, какой световой поток генерирует светильник при затрате 1 Вт мощности.

Сравнение показателей некоторых источников света

Светоотдача для источников света зависит от их мощности. Например, для обычных ламп накаливания, мощность которых лежит в пределах от 5 Вт до 200 Вт, эта величина меняется от 4 до 13 лм/Вт. Светоотдача ламп накаливания зависит также и от их конструкции.

В таблице ниже приведены данные для светильников различных типов.

Как видно из таблицы световых потоков лампы накаливания уступают как , так и светодиодным светильникам.

При этом максимум сплошного излучения для такой лампы лежит в ИК диапазоне излучаемых волн.

Использование значения светового потока при расчете освещения в помещении

Существует несколько методов расчета освещения в помещении. В большинстве из них используется величина светового потока лампы.

Например, при расчете по методу использования коэффициента светового потока по необходимой освещенности рабочего места, с учетом вспомогательных величин, зависящих от типа светильника и помещения, рассчитывается общий световой поток лампы.

Перед тем, необходимо помнить, что в современных радиодеталях типа MOSFET между стоком и истоком есть дополнительный диод.

Среди других микроустройств, которые широко используются в современных электросхемах, это — для регулирования силы сопротивления, а также , которые в отличие от тиристоров, проводят ток в двух направлениях.

После этого выбирается близкая по величине светового потока стандартная лампа. Если требуемый показатель для освещения помещения оказывается больше, чем могут дать эти лампы, то увеличивается число светильников и производится повторный расчет.

Если для лампы отсутствует величина светового потока, то можно воспользоваться значением её мощности. При этом осуществляется приближенный пересчет с учетом светоотдачи используемого источника света.

Выводы :

  1. Несмотря на пониженные показатели эффективности лампы накаливания продолжают пользоваться спросом.
  2. Важным светотехническим параметром светильников является величина светового потока.
  3. Этот параметр используется при расчетах освещения в помещениях.
  4. Для сравнения эффективности различных светильников, в том числе ламп накаливания, используется значение светоотдачи.
  5. В зависимости от мощности лампы накаливания имеют различный показатель светоотдачи, причем с увеличением первого значение возрастает и вторая величина.

Измерения люксометром различных источников света на видео

Все вы, наверное, слышали про мировой заговор . Масоны, инопланетяне и евреи Производители электрических лампочек вступили в него сто лет назад, чтобы лампочки не служили вечно, а перегорали каждый месяц и жрали уйму электричества. И только сейчас путы заговора разорваны и лампочковые магнаты раздавлены великой империей Китая, завалившей весь мир вечными и экономичными светодиодными лампами. Но не расслабляйтесь – мировой заговор не сдается. Теперь он явился в виде Великой Светодиодной Ложи Лажи Лжи. Короче, все врут (с).


Шутки шутками, а в той или иной степени врут, наверное, все производители LED-светотехники. Кто-то нагло и откровенно, кто-то так, слегка подвирает – но так или иначе, кажется, нет ни одной фирмы, которая не завышала бы параметров своих изделий. Разными способами – кто-то просто пишет красивые цифры от фонаря, порой запредельные с точки зрения здравого смысла. А кто-то – просто пишет характеристики вполне правдивые, но полученные в условиях, далеких от реальных условий эксплуатации. Например, световой поток, измеренный при температуре 25°С в импульсном режиме. Так или иначе, а 15-20% «припуска на вранье» давать придется.


Освещенность измерить просто, световой поток – сложно и дорого. Необходимо собрать весь свет, испущенный лампой и в равной степени учесть лучи по всем направлениям. То есть, нужен фотоприемник в виде полой сферы с одинаковой светочувствительностью каждого участка ее поверхности. Изготовление такой фотометрической сферы и ее последующая калибровка – задача весьма непростая.


Другой подход – по точкам промерить диаграмму направленности источника света и проинтегрировать по всей сфере. Но и это непросто: надо иметь солидных размеров темное помещение с темными стенами. И гониометрическая головка с двумя осями нужна, желательно с автоматическим приводом, чтобы не задолбаться вручную выставлять углы для каждой из нескольких сотен точек.


Впрочем, есть пара частных случаев, которые часто встречаются на практике и для которых можно ограничиться одним измерением. Об одном из них я и хочу поведать хабрасообществу.


Этот частный случай – плоский косинусный излучатель. Косинусным называется такой излучатель, яркость которого не зависит от угла между нормалью к его поверхности и направлением на наблюдателя. Диаграмма направленности такого излучателя определяется исключительно геометрией – а именно видимой площадью поверхности. И для плоского косинусного излучателя существует простое соотношение между световым потоком и силой света в направлении нормали к плоскости:



То есть достаточно измерить люксметром освещенность в метре от источника света и умножить ее на 3,14 – и мы уже имеем величину светового потока (либо, если расстояние не равно метру, его придется учесть по закону обратных квадратов). Разумеется, источник света должен быть много меньше расстояния до люксметра – иначе закон обратных квадратов работать не будет и результат измерения будет завышен.


Какие же источники света можно с достаточной для практики точностью считать плоскими косинусными излучателями? Это практически любые белые осветительные светодиоды без линзы и плоские сборки на их основе. Всевозможные китайские 5730, 2835, 5050, 3030 и прочие, что встречаются обычно в светодиодных лампах с алиэкспресса, а также продаются там же отдельно в катушках за копейки – это оно. А также матрицы. И китайские квадратные на 10 ватт, и Cree CXA и CXB. А вот для любых светодиодов с линзой, а также для светодиодов без люминофора (например, RGB) такой метод не годится - их диаграмма направленности существенно отличается от косинусной. Плоские светильники, встраиваемые в потолок и закрытые молочным стеклом, также неплохо соответствуют этой модели.


Итак, давайте уже что-нибудь измерим. В качестве подопытных кроликов у нас сегодня:


1. Сборка китайская на 90 ватт из 156 светодиодов 5730 (в каждом по два кристалла 13х30 mil) со встроенным драйвером на CYT3000B. По заверениям китайцев, должна давать 9200 лм.




Потребляемая мощность по приборам - 85 Вт, на ней и остаемся .


2. Матрица CXA2530, новая версия, 3000 кельвин, Ra>80. Световой поток при 800 мА и 85°С согласно даташиту - не менее 3440 лм, а при 25°С (такой температуры не бывает, если только не захолодить сам светодиод до температуры ниже нуля - тепловое сопротивление не даст) - не менее 4150 лм.




Заводим на токе 800 мА, потребляемая мощность составила 28,64 Вт .


3. HPR20D-19K20 - древняя, как мамонт (покупалась году в 2010, если не раньше) матрица на 20 ватт фирмы HueyJann, похожая на нынешние 10-ваттные матрицы, отличается от них большим количеством кристаллов под люминофором - их 16 штук вместо девяти (4 штуки последовательно в каждой из четырех параллельно включенных цепочек). Заявлено 1830 лм при токе 1,7 А, реально на глаз не ярче, чем CXA2011 с подводимой мощностью 11 Вт.

Запускаем на паспортном токе 1,7 А, напряжение составило 12,2 В, мощность 20,74 Вт .


Освещенность измеряем люксметром UT382 (Uni-T), на "глазок" которого надеваем бленду из черной бумаги, чтобы не ловил отраженный от стен свет в неподготовленном помещении. Расстояние во всех случаях - метр. Результаты в таблице.




Выходит, что световой поток китайской сборки соответствует заявленному (в пределах погрешности люксметра), у Cree"шной матрицы тоже все в пределах даташита (учитывая, что температура ее неизвестна), а вот у HueyJann"овской матрицы обещанных люменов нет и близко.


Но что-то затерзали меня смутные сомнения: 9000 с хвостиком люмен при 85 ваттах, учитывая КПД драйвера 80% и при том, что светодиоды работают далеко не в облегченном режиме, по полватта на корпус, а пиковый ток вдвое больше среднего (никакого фильтрующего конденсатора у этих плат нет) - это очень даже круто. Вдобавок как-то не видно от этой сборки значительно большей освещенности в комнате по сравнению с люстрой, в которой пять лампочек по 950 лм (энергосберегайки).


Подозрение падает на люксметр - не все из них адекватно измеряют светодиодные источники. Те из них, что сделаны на базе фотодиода BPW21R, имеют очень приблизительное соответствие спектральной чувствительности стандартной кривой видности, и относительная чувствительность к излучению 450 нм (это длина волны, соответствующая синему пику, имеющемуся в спектре почти всех белых светодиодов) превышает относительную чувствительность глаза в этой области в несколько раз. В данном приборе фотоприемник другой, что и являлось одним из критериев при выборе прибора, но все же сходим в охрану труда и возьмем другой люксметр. Это оказался ТКА-Люкс. В его методике поверки содержится проверка спектральной характеристики, то есть она должна соответствовать кривой видности с нормируемой погрешностью. Повторяем измерения с ним. Вот результаты:




Ну что тут сказать? Врут не только производители светодиодных ламп, но и мой люксметр. Причем врет, как и ожидалось, по-разному для разных светодиодов. Для матрицы CXA2530 разница с профессиональным аппаратом минимальная, скорее в пределах погрешности обоих приборов. Но у этой матрицы провал в спектре почти незаметен, если смотреть через компакт-диск (реально он, конечно, есть). А вот остальные подопытные "провалились" прилично. И теперь прекрасно видно, что до заявленных люменов они не дотягивают более чем заметно: китайская 90-ваттная сборка - на 25%, а матрица HPR20D-19K20 - почти вдвое.


Отсюда можно сделать следующие выводы :

  1. Да, описанным образом можно оценить световой поток, испускаемый светодиодами, матрицами и сборками (в пределах описанного частного случая).
  2. С измерением освещенности от светодиодов люксметром надо быть осторожным и убедиться, что он имеет корректную кривую спектральной чувствительности. Ибо врут все (с).
  3. Если измерения показывают, что китайским изделием достигнуты заявленные характеристики, значит, вполне вероятно, что прибор проградуирован в китайских люксах:).

Если вам захочется таким же образом оценить световой поток светодиодной лампочки с полусферическим рассеивателем, нужно снять рассеиватель. Под ним скорее всего будут вполне подходящие светодиоды. Но сам рассеиватель вносит потери 15-20 и более процентов светового потока.


Да, и последнее. Описанная методика ни в коей мере не является ни метрологически строгой, ни точной. Она оценочная и не более того. Именно поэтому я не привел здесь анализа погрешностей.

Метки: Добавить метки