Датчик реагирующий на прикосновение. Датчик прикосновения TTP223

Датчик касания для Arduino

Модуль представляет собой сенсорную кнопку, на его выходе формируется цифровой сигнал, напряжение которого соответствует уровням логических единицы и нуля. Относится к емкостным датчикам касания. С такого рода устройствами ввода данных мы сталкиваемся при работе с дисплеем планшета, айфона или тачскрин монитора. Если на мониторе мы нажимаем на иконку стилусом или пальцем, то здесь для этого используется область поверхности платы размером с иконку Windows касание которой производится только пальцем, стилус исключается. Основа модуля микросхема TTP223-BA6 . Есть индикатор питания.

Управление ритмом воспроизведения мелодии

При установке в прибор сенсорную область поверхности платы модуля закрывают тонким слоем стеклотекстолита, пластмассы, стекла иди дерева. К преимуществам емкостной сенсорной кнопки относится большой срок службы и возможность герметизации передней панели прибора, антивандальные свойства. Это позволяет использовать датчик касания в работающих на открытом воздухе приборах в условиях прямого попадания капель воды. Например, кнопка дверного звонка или бытовые приборы. Интересно применение в оборудовании умный дом - замена выключателей освещения.

Характеристики

Напряжение питания 2,5 - 5,5 В
Время отклика на касание в различных режимах потребления тока
низкое 220 мс
обычное 60 мс
Выходной сигнал
Напряжение
высокий лог. уровень 0,8 Х напряжение питания
низкий лог. уровень 0,3 Х напряжение питания
Ток при питании 3 В и логических уровнях, мА
низкий 8
высокий -4
Размеры платы 28 x 24 x 8 мм

Контакты и сигнал

Нет касания - выходной сигнал имеет низкий логический уровень, касание - на выходе датчика логическая единица.

Почему это работает или немного теории

Тело человека, как и все что нас окружает, обладает электрическими характеристиками. При срабатывании датчика прикосновения проявляются наши емкость, сопротивление, индуктивность. На нижней стороне платы модуля расположен участок фольги соединенный с входом микросхемы. Между пальцем оператора и фольгой на нижней стороне расположен слой диэлектрика - материал несущей основы печатной платы модуля. В момент касания происходит заряд тела человека микроскопическим током, протекающим через конденсатор, образованный участком фольги и пальцем человека. При упрощенном рассмотрении ток протекает через два последовательно соединенных конденсатора: фольга, палец находящихся на противоположных поверхностях платы и тело человека. Поэтому если поверхность платы закрыть тонким слоем изолятора, то это приведет к увеличению толщины слоя диэлектрика конденсатора фольга-палец и не нарушит работу модуля.
Микросхема TTP223-BA6 фиксирует ничтожный импульс микротока и регистрирует прикосновение. Благодаря свойствам микросхемы работать с такими токами никакого вреда такая технология не наносит. Когда мы касаемся корпуса работающего телевизора или монитора через нас проходят микротоки большей величины.

Режим пониженного потребления

После подачи питания датчик касания находится в режиме пониженного энергопотребления. После срабатывания на 12 секунд модуль переходит в обычный режим. Если далее касание не произошло, то модуль вернется в режим пониженного потребления тока. Скорость реакции модуля на касание в различных режимах приведена в характеристиках выше.

Работа совместно с Arduino UNO

Загрузите в Arduino UNO следующую программу.

#define ctsPin 2 // Контакт подключения линии сигнала датчика касания
int ledPin = 13; // Контакт для светодиода

Void setup() {
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode(ctsPin, INPUT);
}

Void loop() {
int ctsValue = digitalRead(ctsPin);
if (ctsValue == HIGH){
digitalWrite(ledPin, HIGH);
Serial.println("TOUCHED");
}
else{
digitalWrite(ledPin,LOW);
Serial.println("not touched");
}
delay(500);
}

Соедините датчик касания и Arduino UNO как показано на рисунке. Схему можно дополнить включающимся при касании датчика светодиодом, подключенным через резистор 430 Ом к контакту 13. Сенсорные кнопки часто оснащают индикатором касания. Так удобней работать оператору. При нажатии на механическую кнопку мы чувствуем щелчок независимо от реакции системы. Здесь новизна технологии немного удивляет из-за нашей моторики сложившейся годами. Индикатор нажатия избавляет нас от излишнего ощущения новизны.

А. В. Скурятин, г. Москва

Датчик прикосновения был создан в ходе экспериментального изучения качер-процесса в биполярном транзисторе, описанного В. И. Бровиным .

Предлагаемая для повторения схема представляет собой усилитель, обладающий высокой чувствительностью к электромагнитному полю, создаваемому внешними устройствами. При подключении входного контакта схемы к антенне светодиод сигнализирует о наличии излучения электромагнитного поля и наводок от электрооборудования. Светодиод также будет индицировать факт прикосновения к контакту, так как роль антенны в данном случае выполняет тело человека. Отсюда и название - датчик прикосновения. Другое название схемы - активная антенна .

Принципиальная схема датчика прикосновения показана на Рисунке 1.

Схема напоминает автогенератор на транзисторе n-p-n структуры. Один из выводов обмотки L1 подключается непосредственно к входному контакту X1. Полярность включения светодиода VD1 не имеет значения. Резистор R2 ограничивает ток через светодиод и, тем самым, определяет яркость его свечения при срабатывании датчика.

Датчик прикосновения собран на макетной плате размером 40 × 40 мм. Внешний вид конструкции показан на Рисунке 2.

Рисунок 2. Внешний вид датчика прикосновения.

Обмотки L1 и L2 расположены на общем каркасе с двумя секциями для намотки и подстроечным ферритовым сердечником. Наружный диаметр каркаса - 10 мм, длина сердечника - 23 мм, диаметр резьбы у основания сердечника - 6 мм. В конструкции, показанной на Рисунке 2, L1 намотана на верхней секции, L2 - на нижней. Каждая катушка содержит 100 витков провода ПЭЛ 0,2. Обмотки включены согласно. При помощи отвертки сердечник ввинчивается внутрь каркаса. Светодиод VD1 - любой из серии АЛ307 . В качестве Х1 использован лепесток заземления. Прикосновение к нему вызывает зажигание светодиода.

Параллельно VD1 можно подключить измерительный прибор, к примеру, мультиметр в режиме измерения напряжения, что позволит оценивать уровень напряженности поля. В этом случае внешняя антенна может представлять собой отрезок монтажного провода длиной несколько сантиметров. Настройка схемы будет сводиться к выбору длины антенны и поиску такого положения сердечника, при котором напряжение на светодиоде максимально.

Схема не привередлива к выбору элементной базы. К примеру, в первоначальном варианте схемы применялся транзистор КТ815Г , сопротивление резистора R1 составляло 100 кОм. В качестве L1 и L2 использовались две катушки на стержневом ферритовом сердечнике длинноволновой магнитной антенны из радиоприемника. Катушки можно было двигать вдоль сердечника. При перемещении катушек наблюдались явления, не противоречащие закону электромагнитной индукции, в отличие от схемы, предложенной в . При значительном удалении катушек друг от друга и без ферритового сердечника схема работать переставала.

Практическое применение схема может найти не только при конструировании измерителей напряженности поля, но и в устройствах автоматики и сигнализации. Датчик прикосновения можно подключить к микроконтроллеру. Для этого следует выполнить аналого-цифровое преобразование напряжения на светодиоде VD1, возможно, с помощью ресурсов самого микроконтроллера, если он содержит встроенный АЦП.

В заключение необходимо отметить, что существует немало схем датчиков прикосновения, основанных на полевых транзисторах и не содержащих индуктивных элементов. Возможно, их работа во многих случаях более эффективна, но конструкция, приведенная в этой статье, является примером оригинального технического решения и ориентирована на начинающих радиолюбителей.

Литература

  1. Бровин В. И. Явление передачи энергии индуктивностей через магнитные моменты вещества, находящегося в окружающем пространстве, и его применение. - М.: МетаСинтез, 2003 - 20 с.
  2. Крылов К. С., Ли Жаехо, Ким Янг Жин, Ким Сеунгхван, Ли Санг-Ха. Патент на изобретение №2395876. Активная магнитная антенна с ферритовым сердечником.

Электор 2008 №7-8

Работа ёмкостных датчиков прикосновения основана на электрической ёмкости человеческого тела. Например, когда близко к датчику подносят палец, то это создаёт ёмкость между датчиком и землёй, лежащую в диапазоне 30...100 пФ. Этот эффект может быть использован в датчиках приближения и переключателях, управляемых прикосновением.

Сенсорные ёмкостные датчики имеют очевидные преимущества по сравнению с другими датчиками (например, срабатывающими от наводок частотой 50/60 Гц или измеряющими сопротивление), но они более трудоёмки в реализации. Производители микросхем, такие как Microchip в прошлом создали специальные ИС для этих целей. Однако и сейчас можно создать надёжный ёмкостный детектор и/или переключатель, используя только небольшое число стандартных компонентов.

В этой схеме мы детектируем изменения ширины импульсов сигнала, возникающие при касании контакта. На рисунке 1 можно рассмотреть следующие узлы (слева направо):

Рис. 1. IC1 - 561ТЛ1

Генератор прямоугольных импульсов, выполненный на триггере Шмитта (ИС CD4093);
RC цепь с гасящим диодом, за которыми идёт триггер Шмитта/контактная пластина с изолирующим конденсатором ёмкостью 470 пФ;
- Интегрирующая RC цепь, преобразующая изменения ширины импульсов в напряжение. Это напряжение лежит в районе 2,9...3,2 вольт, когда до пластины дотрагиваются, и 2,6 вольт в другом случае.
- Компаратор LM 339 используется для сравнения напряжения в точке C с образцовым напряжением в точке D. Последнее составляет около 2,8 В и устанавливается делителем напряжения.

Как только произойдёт касание сенсорной пластины, выход схемы станет активным. Для пояснения работы схемы на рисунке 2 приведены осциллограммы сигналов в разных точках. Пунктирная линия показывает состояние при касании пластины датчика, сплошная линия - при отсутствии касания.

Рис. 2. Осциллограммы сигналов а разных точках.

Образцовое напряжение в точке D настраивается один раз с помощью делителя R4/R5 (изменяя значение R4). Величина этого напряжения сильно зависит от площади поверхности пластины-датчика (обычно несколько квадратных сантиметров). Большая площадь поверхности пластины увеличивает ёмкость и напряжение в точке C тем не менее будет больше, по сравнению с тем напряжением, когда пластины не касались. Образцовое напряжение в точке D должно быть установлено ближе к значению 3,4 В. Датчик прикосновения может так же работать с пластинами большой площади (например, можно использовать в качестве сенсора весь корпус).

Выходной сигнал может быть использован для включения различных нагрузок. Во многих случаях рекомендуется добавить на выход один триггер Шмитта, особенно если выход соединён с цифровым входом.

Вим Абуйс


Рис. 4. Расположение компонентов на печатной плате.


Рис. 5. Печатная плата.


Рис. 6. Печатная плата (зеркальный вид).

В данной статье мы подробно (но не слишком) рассмотрим принципы электричества, которые позволяют нам обнаруживать прикосновение человеческого пальца, используя немного больше, чем просто конденсатор.

Конденсаторы могут быть сенсорными

В течение последнего десятилетия или около того стало действительно трудно представить себе мир с электроникой без сенсорных датчиков прикосновений. Смартфоны являются тому наиболее заметным и распространенным примером, но, конечно, существуют и другие многочисленные устройства и системы, которые обладают датчиками прикосновений. Для построения сенсорных датчиков прикосновений могут использоваться и емкость, и сопротивление; в данной статье мы будем обсуждать только емкостные датчики, которые более предпочтительны в реализации.

Хотя применения, основанные на емкостных датчиках, могут быть довольно сложными, фундаментальные принципы, лежащие в основе данной технологии, достаточно просты. На самом деле, если вы понимаете суть емкости и факторы, которые определяют емкость конкретного конденсатора, вы стоите на правильном пути в понимании работы емкостных сенсорных датчиков прикосновения.

Емкостные сенсорные датчики касания делятся на две основные категории: на основе взаимной емкости и на основе собственной емкости. Первый из них, в котором конденсатор датчика состоит из двух выводов, которые действуют как излучающий и приемный электроды, является более предпочтительным для сенсорных дисплеев. Последний, в котором один вывод конденсатора датчика подключен к земле, является прямым подходом, который подходит для сенсорной кнопки, слайдера или колеса. В данной статье мы рассмотрим датчики на основе собственной емкости.

Конденсатор на базе печатной платы

Конденсаторы могут быть различных типов. Мы все привыкли видеть емкость в виде компонентов с выводами или корпусов поверхностного монтажа, но на самом деле, всё, что вам действительно необходимо, это два проводника, разделенных изолирующим материалом (т.е. диэлектриком). Таким образом, довольно просто создать конденсатор, используя лишь электропроводные слои, разделенные печатной платой. Например, рассмотрим следующие вид сверху и вид сбоку печатного конденсатора, используемого в качестве сенсорной кнопки прикосновения (обратите внимание на переход на другой слой печатной платы на рисунке вида сбоку).

Изолирующее разделение между сенсорной кнопкой и окружающей медью создает конденсатор. В этом случае, окружающая медь подключена к земле, и, следовательно, наша сенсорная кнопка может быть смоделирована, как конденсатор между сенсорной сигнальной площадкой и землей.

Возможно, сейчас вы захотите узнать, какую емкость реально обеспечивает такая разводка печатной платы. Кроме того, как мы рассчитаем ее точно? Ответ на первый вопрос: емкость очень мала, может составлять около 10 пФ. Что касается второго вопроса: не беспокойтесь, если забыли электростатику, потому что точное значение емкости конденсатора не имеет никакого значения . Мы ищем только изменения в емкости, и мы можем обнаружить эти изменения без знания номинального значения емкости печатного конденсатора.

Влияние пальца

Так что же вызывает эти изменения емкости, которые контроллер датчика прикосновений собирается обнаружить? Ну, конечно же, человеческий палец.

Прежде, чем мы обсудим, почему палец изменяет емкость, важно понимать, что здесь нет прямого электрического контакта; палец изолирован от конденсатора лаком на печатной плате и, как правило, слоем пластика, который отделяет электронику устройства от внешней среды. Так что палец не разряжает конденсатор , и, кроме того, количество заряда, хранимое в конденсаторе в определенный момент, не представляет интереса - скорее интерес представляет емкость в определенный момент.

Итак, почему же присутствие пальца изменяет емкость? Есть две причины: первая включает в себя диэлектрические свойства пальца, а вторая включает в себя его проводящие свойства.

Палец как диэлектрик

Обычно мы думаем о конденсаторе, как имеющем фиксированную величину, определяемую площадью двух проводящих пластин, расстоянием между ними и диэлектрической проницаемостью материала между пластинами. Мы, конечно, не можем изменить физические размеры конденсатора, просто прикоснувшись к нему, но мы можем изменить диэлектрическую проницаемость, так как палец человека обладает диэлектрическими характеристиками, отличающимися от материала (предположительно воздуха), который он вытесняет. Это правда, что палец не будет находиться в настоящей области диэлектрика, т.е. в изолирующем пространстве непосредственно между проводниками, но такое «вторжение» в конденсатор необязательно:

Как показано на рисунке, чтобы изменить диэлектрические характеристики, нет необходимости помещать палец между пластинами, поскольку электрическое поле конденсатора распространяется в окружающую среду.

Оказывается, что человеческая плоть является довольно хорошим диэлектриком, потому что наши тела состоят в основном из воды. Относительная диэлектрическая проницаемость вакуума равна 1, а относительная диэлектрическая проницаемость воздуха лишь немного выше (около 1,0006 на уровне моря при комнатной температуре). Относительная диэлектрическая проницаемость воды намного выше, около 80. Таким образом, взаимодействие пальца с электрическим полем конденсатора представляет собой увеличение относительной диэлектрической проницаемости, и, следовательно, приводит к увеличению емкости.

Палец как проводник

Любой, кто испытал на себе удар электрического тока, знает, что кожа человека проводит ток. Я уже упоминал выше, что прямого контакта между пальцем и сенсорной кнопкой (то есть ситуации, когда палец разряжает печатный конденсатор) нет. Тем не менее, это не означает, что проводимость пальца не имеет значения. Она на самом деле весьма важна, так как палец становится второй проводящей пластиной в дополнительном конденсаторе:

На практике мы можем предположить, что этот новый конденсатор, созданный пальцем, подключен параллельно существующему печатному конденсатору. Эта ситуация немного сложнее, потому что человек, использующий сенсорное устройство, электрически не соединен с землей на печатной плате, и, таким образом, эти два конденсатора не включены параллельно в обычном для анализа цепей смысле.

Тем не менее, мы можем думать о человеческом теле, как об обеспечивающем виртуальную землю, поскольку оно имеет относительно большую емкость, чтобы поглощать электрический заряд. В любом случае, нам не нужно беспокоиться о точной электрической связи между конденсатором с пальцем и печатным конденсатором; важным моментом является то, что псевдопараллельное соединение этих двух конденсаторов означает, что палец будет увеличивать общую емкость, так как конденсатор добавляется параллельно.

Таким образом, мы можем увидеть, что оба механизма влияния при взаимодействии пальца и емкостного датчика касания способствуют увеличению емкости.

Близкое расстояние или контакт

Предыдущее обсуждение приводит нас к интересной особенности емкостных датчиков касаний: измеряемое изменение емкости может быть вызвано не только контактом между пальцем и датчиком, но и близким расстоянием между ними. Я обычно думаю о сенсорном устройстве, как о замене механического переключателя или кнопки, но емкостная технология датчиков касаний на самом деле представляет собой новый уровень функциональности, позволяя системе определять расстояние между датчиком и пальцем.

Оба механизма изменения емкости, описанные выше, оказывают влияние, которое зависит от расстояния. Для механизма на базе диэлектрической проницаемости количество «мясного» диэлектрика взаимодействие с электрическим полем конденсатора увеличивается при приближении пальца к проводящим частям печатного конденсатора. Для механизма на базе проводящих свойств емкость конденсатора с пальцем (как и любого другого конденсатора) обратно пропорциональна расстоянию между проводящими пластинами.

Ваш регион:

Самовывоз из офиса

Самовывоз из офиса в Москве

  • При оформлении до 15:00 в будний день заказ можно забрать после 17:00 в тот же день, иначе — на следующий будний день после 17:00. Мы позвоним и подтвердим готовность заказа.
  • Получить заказ можно с 10:00 до 21:00 без выходных после его готовности. Заказ будет ждать вас 3 рабочих дня. Если хотите продлить срок хранения, просто напишите или позвоните.
  • Запишите номер своего заказа перед визитом. Он необходим при получении.
  • Чтобы к нам пройти, предъявите на проходной паспорт, скажите, что вы в Амперку, и поднимитесь на лифте на 3-й этаж.
  • бесплатно
Доставка курьером по Москве

Доставка курьером по Москве

  • Доставляем на следующий день при заказе до 20:00, иначе — через день.
  • Курьеры работают с понедельника по субботу, с 10:00 до 22:00.
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • 250 ₽
Доставка в пункт самовывоза

Доставка в пункт PickPoint

  • PickPoint .
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • 240 ₽

Доставка курьером по Питеру

Доставка курьером по Санкт-Петербургу

  • Доставляем через день при заказе до 20:00, иначе — через два дня.
  • Курьеры работают с понедельника по субботу, с 11:00 до 22:00.
  • При согласовании заказа можно выбрать трёхчасовой интервал доставки (самое раннее — с 12:00 до 15:00).
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • 350 ₽
Доставка в пункт самовывоза

Доставка в пункт PickPoint

  • Доставка в пункт самовывоза — современный, удобный и быстрый способ получить свой заказ без звонков и ловли курьеров.
  • Пункт самовывоза — это киоск с человеком или массив железных ящичков. Их ставят в супермаркетах, офисных центрах и других популярных местах. Ваш заказ окажется в том пункте, который выберите.
  • Ближайший к себе пункт вы можете найти на карте PickPoint .
  • Срок доставки — от 1 до 8 дней в зависимости от города. Например, в Москве это 1-2 дня; в Петербурге — 2—3 дня.
  • Когда заказ прибудет в пункт выдачи, вы получите SMS с кодом для его получения.
  • В любое удобное время в течение трёх дней вы можете прийти в пункт и с помощью кода из SMS получить заказ.
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • Стоимость доставки — от 240 руб в зависимости от города и габаритов заказа. Она рассчитывается автоматически во время оформления заказа.
  • 240 ₽

Доставка в пункт самовывоза

Доставка в пункт PickPoint

  • Доставка в пункт самовывоза — современный, удобный и быстрый способ получить свой заказ без звонков и ловли курьеров.
  • Пункт самовывоза — это киоск с человеком или массив железных ящичков. Их ставят в супермаркетах, офисных центрах и других популярных местах. Ваш заказ окажется в том пункте, который выберите.
  • Ближайший к себе пункт вы можете найти на карте PickPoint .
  • Срок доставки — от 1 до 8 дней в зависимости от города. Например, в Москве это 1-2 дня; в Петербурге — 2—3 дня.
  • Когда заказ прибудет в пункт выдачи, вы получите SMS с кодом для его получения.
  • В любое удобное время в течение трёх дней вы можете прийти в пункт и с помощью кода из SMS получить заказ.
  • Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
  • Стоимость доставки — от 240 руб в зависимости от города и габаритов заказа. Она рассчитывается автоматически во время оформления заказа.
Посылка Почтой России

Почта России

  • Доставка осуществляется до ближайшего почтового отделения в любом населённом пункте России .
  • Тариф и сроки доставки диктует «Почта России». В среднем, время ожидания составляет 2 недели.
  • Мы передаём заказ Почте России в течение двух рабочих дней.
  • Оплатить заказ можно наличными при получении (наложенный платёж) или же онлайн при оформлении заказа.
  • Стоимость рассчитывается автоматически во время заказа и в среднем должна составить около 400 рублей.
Доставка службой EMS

Доставка службой EMS

  • Служба «EMS Почта России» работает быстрее и надёжнее обычной почты и доставляет до двери покупателя.
  • Тариф и сроки доставки диктует служба EMS. В среднем по России время ожидания составляет 4-5 дней.
  • Мы передаём заказ в EMS в течение двух рабочих дней.
  • Оплатить заказ можно только онлайн при оформлении заказа.
  • Стоимость рассчитывается автоматически во время оформления заказа и в среднем должна составить 400-800 рублей для России и 1500-2000 рублей для стран СНГ.

Помимо онлайн-магазина, товар также представлен:

Офис-магазин, м. Таганская

Офис-магазин, м. Таганская

Товары из офиса нельзя заказать через интернет или забронировать. Можно только прийти, схватить и бежать. Доступное количество актуально на момент загрузки страницы.

Офис находится в 5 минутах ходьбы от м. Таганская, по адресу Большой Дровяной переулок, дом 6 .

Скоро Магазин-мастерская, м. Лиговский пр-т

Магазин-мастерская, м. Лиговский пр-т

Товары из магазина-мастерской нельзя заказать через интернет или забронировать. Можно только прийти, схватить и бежать. Доступное количество актуально на момент загрузки страницы.

Магазин-мастерская находится в трёх минутах пешком от метро Лиговский Проспект, на территории пространства «Лофт Проект Этажи», по адресу Лиговский проспект 74Д .

Ёмкостный датчик прикосновения работает как обычная кнопка, но в нём нет подвижных частей. Кнопка почувствует «нажатие» сквозь корпус устройства и сработает как бесконтактный концевик в проектах домашней автоматизации.

Сенсор работает через неметаллические материалы - пластмассу, картон, фанеру или стекло. Эту особенность можно использовать для создания скрытых или защищённых элементов управления.

Поместите модуль в герметичный корпус или спрячьте под лицевую панель устройства - кнопка почуствует приближение пальца даже через четырёхмиллиметровый слой диэлектрика.

Использование в качестве «кнопки» - не единственный вариант использования ёмкостных датчиков. Они отлично подойдут для контроля уровня воды в пластиковой бочке или стеклянном аквариуме.

Что на борту

Система определения прикосновения состоит из чувствительного элемента, блока измерения ёмкости датчика и логической схемы, реагирующей на изменение ёмкости при приближении объекта.

В качестве чувствительного элемента используется токопроводящий контур на лицевой части модуля.

Логика построена на базе микросхемы AT42QT1010 . Она отвечает за автоматическую калибровку датчика. Калибровка занимает примерно полсекунды и выполняется сразу после появления питания на модуле. Кроме того, микросхема фильтрует значения, компенсирует дрейф ёмкостного датчика и корректирует работу устройства при изменении температуры и влажности окружающей среды.

При каждом срабатывании сенсора загорается яркий красный светодиод. Это поможет при отладке проекта и пригодится для создания интерактивных панелей управления.

Подключение

Сенсорный модуль по своей сути аналогичен цифровой кнопке . Пока кнопка нажата, датчик отдаёт логическую единицу; когда кнопка не нажата - логический ноль.

В простом варианте модуль подключается к управляющей электронике как простая кнопка - одним .

Для этого используется левая группа контактов:

  • Контакт S - сигнальный пин, подключаемый к цифровому входу контроллера.
  • Контакт V - питание. Подключается к линии питания 3,3-5 В.
  • Контакт G - подключается к земле.

В правой группе контактов используется только один пин - M. Он переключает режимы работы модуля. Две оставшиеся ноги используются для надёжной фиксации модуля на Troyka Slot Shield .

Переключение режима работы

По умолчанию модуль работает в режиме пониженного энергопотребления. Опрос датчика проводится раз в 80 миллисекунд. Это существенно экономит энергию аккумуляторов.

Если вам требуется увеличить отзывчивость интерфейса, подключите пин М к контроллеру и подайте на него логическую единицу. Модуль переключится в режим высокоскоростной обработки данных, интервал опроса сенсора уменьшится до 10 миллисекунд.

Комплектация

  • 1× Плата-модуль

Характеристики

  • Напряжение питания: 3,3-5 В
  • Контроллер сенсора: AT42QT1010
  • Интерфейс кнопки: цифровой, бинарный
  • Габариты: 25×25 мм