Схема управления люстрой. Управление многоламповыми светильниками по двум провода - Конструкции простой сложности - Схемы для начинающих

Занимаясь ремонтом, всякими отделками-переделками, не каждый мастер в состоянии предусмотреть все нюансы и «мелочи». Да и работы по ремонту-отделке не всегда включают в себя комплекс капитальных переустройств.

Так очень часто происходит со светом. Точнее – с . Например: забыли прокинуть дополнительный провод на освещение гостиной, или: поменяли в спальне обои, но стены штробить не стали, чтобы «грязь не разводить», зато «вечернее» освещение комнаты отсутствует напрочь! Подобных ситуаций немало, а современное представление о комфорте уже неразрывно связано с широкими возможностями светового оформления, с различными вариантами освещения. Так что давайте подумаем, ведь безвыходных ситуаций не бывает!

Начнём с самого обычного случая. В старых квартирах к центральной люстре подведено всего два провода, то есть даже простое освещение в «два режима» сделать не выходит. Долбить потолок? Вешать несколько бра на стены? Необязательно. Существует немало различных «схем» управления люстрой по двум проводам – совсем простых, средней сложности реализации и довольно серьёзных электронных устройств. Мы рассмотрим самую несложную и доступную для повторения схему включения.

Сам принцип «двухпозиционного» освещения очень прост, достаточно уменьшить ток на лампах светильника или люстры, и с помощью включения в цепь диода достаточной мощности реализовать два режима освещения не составит труда.

Используя обычный двухклавишный выключатель, мы можем включить нашу люстру на «половинную» мощность (S1), или на полную (S1 и S2 вместе). Куда уже проще?

Но если добавить ещё один такой-же диод в нашу схему, только включив его «во встречном направлении», то свет будет включаться при нажатии на любую клавишу «вполнакала», а вторая клавиша вновь включает полную мощность освещения. Дополнительным плюсом такой схемы станет то, что включая освещение сперва «вполнакала», мы подогреваем нить ламы, увеличивая её сопротивление, и при подаче полного напряжения не происходит резкого скачка тока, как при обычном включении холодных ламп. Все помнят, что лампочки перегорают как правило, в момент включения? Так вот, наша схемка продлит срок службы ламп накаливания на неопределённое время!

Однако на этом возможности двухпроводной схемы не исчерпаны. Всего пара новых элементов в схеме даёт возможность включать-выключать отдельные группы ламп.

Совсем просто? А функциональность такого включения вполне на уровне – включая одну клавишу выключателя, мы подаём «уполовиненное» напряжение на Л1, Л2, Л3, а лампы Л4 и Л5 вовсе не включаются, поскольку диод «выпрямляет» напряжение питания, а конденсатор не «пропускает» постоянный ток.

Как видим, не нужно быть большим специалистом и профессионально заниматься электротехникой, чтобы зажечь свет в различной конфигурации, имея в распоряжении всего двухпроводную линию. Упростит задачу ещё больше, примерное соотношение мощности подключаемых лампочек и ёмкости «управляющих» конденсаторов:

Конечно, цифры эти приблизительны, можно ставить конденсаторы с ёмкостью ±1,2 мкФ, важно чтобы рабочее напряжение этих приборов было НЕ МЕНЕЕ 250В, а лучше, пусть будет 400В. Это, к примеру, керамические конденсаторы К73-11, диоды же следует подобрать исходя из соотношения – 500 Вт? 2,5 А, то есть прямой номинальный ток диодов должен быть не менее 2,5 А для 5-ти рожковой люстры со 100 ваттными лампочками, и максимальное обратное напряжение диодов должно быть не менее 250 В. Практически можно использовать диоды КД202 с буквенным

индексом Ж, К, М, Р, или любые диоды КД203, КД206.

Для люстры меньшей мощности (скажем 3 лампочки по 75 Ватт) можно использовать диод КД226 В, Г, Д, Е с прямым током пропускания 1,7-2 А.

Диоды для представленных схем монтируются непосредственно в корпус выключателя, или в установочной коробке, следующим образом: Из рисунка 4 видно, что диоды подключены «навстречу» друг другу к общей клемме двойного выключателя, куда обычно подводится напряжение, а «вход» и «выход» схемы находятся на противоположных разъёмах. Ничего сложного. А вот конденсаторы придётся «прятать» в кожухе или корпусе самой люстры, где подключаются провода электропитания.

Хочется надеяться, что благодаря этому материалу, одной «безвыходной» ситуацией во время ремонта станет меньше!

Мощность одной лампочки, Вт Ёмкость конденсатора в цепи, мкФ 100 10 75 7,5 60 6,5 40 4,5

Управление люстрой по двум проводам

Началось все с простого. Позвонил брат и сказал, что приобрел люстру с семью лампами. Уж очень она понравилась ему и его жене. Подключить и повесить - не проблема, проблема в отсутствии третьего провода от выключателя до крючка на потолке. Семь ламп - красиво, но как-то многовато. Существуют решения в виде светорегулятора на диммере, но они не устраивают, по причине ухода ламп в ИК диапазон при уменьшении их питания. Попросту говоря свет от люстры становится желтым. Теряется вся прелесть люстры. Тут уместно вспомнить о КПД лампы при понижении питания, чтобы окончательно отказатся от такого способа. К тому же качество предлагаемых подобных устройств, оставляет желать лучшего.

Почему же не помочь? Итогом работы явилось предлагаемое устройство.

Разделенное на неравные (или равные) части все лампы, образуют два канала.

Со стороны пользователя, сей девайс ничего особенного не делает. При включении зажигает плавно первую группу ламп, если надо поярче, то при перещелкивании выключателем вместе плавно зажигаются обе группы. Плавный розжиг, позволит экономить на приобретении новых ламп накаливания и откладывать сэкономленное на покупку семи энергосберегаек.

Все должно быть как в Швеции (то есть - с умом), поэтому в схеме могут найтись лишние детали, лишь повышающие надежность.

Программа тоже швейцарская, из-за этого внутри МК происходит следующее:

Фильтруется оконным фильтром сигнал синхронизации;

Специальным методом осуществляется проверка на ее наличие;

При исчезновении синхронизации происходит переключение состояния автомата, с запоминанием его в оперативной памяти;

Если синхронизация пропадает надолго, триггер состояния сбрасывается в исходное состояние, чтобы при следующем включении опять работал только один канал.

Работающему по такому принципу устройству не страшны помехи по сети, вплоть до сброса МК, потому как при аппаратном ресете проверяются контрольные ячейки в ОЗУ, по информации которых восстанавливается работа устройства с сохранением углов управления, поэтому если и случится (не дай Бог) сбой в работе из-за помехи, то его можно и не увидеть по лампам.

Сведения для интересующихся:

Исходным событием, которое переключит работу устройства с одного на два канала, является пропадание синхронизации на время 160-960 мс. Если пропадет на большее время, то устройство вернется в исходное состояние, то есть на работу с одной группой ламп. Управление симисторами импульсно-фазовым методом с длительностью отпирающего импульса 40мкс и с 250 дискретными углами. Если в периоде не зафиксирована синхронизация, то управляющий импульс не выдается.

Собственно говоря, схема:

Фото готового устройства. Сделано плоским, чтобы влазило в основание люстры. Отсюда размер платы.




Программа написана на ассемблере. В исходнике подробные комментарии. В архиве с проектом лежит tiny13wrt.bat - файл для авреала с фузами. Если не хочется ковыряться, можно просто вынуть из архива 7102355.hех и прошить МК чем угодно, только надо фузами убрать делитель на 8 (CKDIV=1) (9.6МГЦ) и переключить супервизор на 2.7В (BLEV1=0,BLEV0=1)

Покупка новой люстры – риск привлечь столько попутных проблем, что проще продолжать жить под девственно голой лампочкой под потолком. И это не цветовая гармония со шторами, а полноценная электрическая эпопея.

Вы не согласны с утверждением? И мы тоже так не считаем. Потому сегодня научимся крепить бесконечное число проводов люстры к двум стандартным проводам.

Релейный способ имеет весомый недостаток: система быстро изнашивается. Максимум несколько тысяч раз использования приведут к поломке схемы. Как известно, она расположена в декоративном колпачке под потолком. Вряд ли кого-то воодушевит ежегодные процедуры разборки люстры «в корне».

Ознакомимся с системой релейного подключения. Ее основные элементы:

  • терморезистор R1, R2;
  • конденсатор C1;
  • реле К1;
  • диодная сборка.

При включении лампы холодный терморезистор (R2) обладает высокой силой сопротивления. На реле поступает высокое напряжение, контакты размыкаются и первые 3 лампы в цепи загораются. После 1-2 секунд терморезистор нагревается, что дает постоянное, но пониженное сопротивление в цепи.

Одним из самых популярных современных осветительных потолочных конструкций является . Чтобы правильно подключить такой прибор, необходимо детально ознакомиться с инструкцией и придерживаться определенных правил установки.

Как соединить провода к двойному выключателю при установке люстры с тремя кабелями — можно прочитать в .

Выключение питания на полсекунды будет достаточным, чтобы терморезистор не остыл, а все контакты остались замкнутыми. Теперь все 6 ламп зажжены.

Вернуть освещение в прежнюю позицию 50/50 можно при помощи отключения напряжения на несколько секунд.

Система несколько непроработанная, но все же имеет право на жизнь.

Способы использования полупроводников в управлении освещением люстры

Использование транзисторов пользуется значительно большей популярностью. Их работоспособность отличается долгосрочностью, высокой частотой переключения. Несколько видов управления предоставлены для обзора и выбора.
Управление на базе счетчика

Счетные импульсы лежат в основе управления освещением. Первый обычно отвечает за сброс счетчика. Повторный – за последовательное подключение ламп.



Каждое новое нажатие на выключатель активизирует новую пару или группу ламп. Чтобы сбросить со счетчика импульсы, достаточно выдержать паузу в треть минуты.

Сдвиговый регистр в системе управления

Принцип уже содержится в самом названии. Импульс, попадая на начальную точку С, передается далее по цепочке на D и 1.



Цепь ламп накаливания подключена и работает по принципу, как на примере со счетчиком.

Для поиска обрывов неисправной электросети используют специальные . Как альтернативный метод — это можно сделать с помощью радиоприемника или смартфона.

Система управления с тиристором

Выпрямитель VD6-VD9 питает всю схему управления. Когда выключатель переходит в положение «Вкл», загорается первая лампа в цепи EL3.



Далее заряжаются конденсаторы и накапливают высокий и низкий сигнал таким образом, чтобы DD1 держал транзистор и тиристор закрытыми.Когда выключатель переключают в положение «Выкл», конденсатор перезаряжается.

Микроконтролирование люстры

Микропроцессор оснащен программным обеспечением. Благодаря этому принцип работы может быть уникален. Ведь такая схема может обладать дополнительными заложенными функциональными возможностями помимо обычного освещения. Тем не менее за основу взята та же схема, что и в предыдущих случаях.



Схемы подключения и управления люстрой имеют не такие уж и весомые отличия.

Даже электронная система остается верна первозданному принципу.

Но что действительно не сходится – качество и длительность эксплуатации.

Как работает люстра, подключенная по схеме из двух проводов, на видео

Раздел : Дом и Квартира

В современных домах к люстре, как правило, проведены 3 провода. 1 - нейтральный и 2 управляющих, токовых. А выключатель имеет 2 клавиши. С его помощью можно осуществить раздельное управление лампами люстры. Например 2 лампы, 3 лампы и совместное включение сразу 5 ламп.

А вот в старых домах проводка обычно всего двухпроводная и заменить ее на многопроводную достаточно проблематично. Провод проведен зачастую в пустотах бетонных плит перекрытия. И заменить его или проложить параллельный можно только во время проведения крупного ремонта.

В условиях постоянного роста стоимости электроэнергии, возможность ее экономии начинает становиться заметной статьей в домашнем бюджете. А между тем, те, у кого люстра подключена по 2-м проводам лишены возможности управлять своей люстрой. Либо она выключена вовсе, либо горит на всю катушку.

Но проблема решаема.

Самый простой способ - это купить (или сделать самостоятельно) тиристорный регулятор яркости свечения. Их еще называют диммеры. Они выпускаются в изобилии, причем в унифицированном корпусе и обычный штатный выключатель просто заменяется на такой регулятор. Но этот способ имеет несколько существенных недостатков. Во-первых, такой регулятор все таки достаточно дорог - несколько сотен рублей. Что бы он окупился, потребуется не один год. Во-вторых, дешевые регуляторы создают электрические помехи и могут ухудшить теле и радиоприем, а так же работу радиотелефонов. В третьих, регулируемая мощность таких выключателей, как правило, сильно ограничена (300-500 ватт). Большая мощность может вывести их из строя. И в четвертых - с такими регуляторами не могут нормально работать т.н. энергосберегающие лампы. Это происходит из-за особенностей способа регулирования электронной схемы.

Более дорогие регуляторы освещения могут иметь сенсорное управление, и даже дистанционное управление с помощью ИК-пульта.

Вторым способом ограничения мощности ламп в люстре является последовательное включение мощного диода в провод управления лампы. Полярность включения диода значения не имеет. В этом случае одна клавиша выключателя подключает люстру к фазе через диод, а второй - напрямую. (см. схему). Если в цепь включен диод, то он «отрезает» одну полуволну тока и лампы горят в полнакала. Соответственно потребляют энергии примерно в 2 раза меньше. Из-за большой инерционности нитей накала ламп, мерцание незаметно. При таком способе так же не работают энергосберегающие лампы. Кроме того, при большой мощности диод следует устанавливать на небольшом радиаторе.

Третий способ - включение в цепь гасящего конденсатора (конденсаторов) в качестве реактивного сопротивления. Поскольку емкость конденсаторов можно менять (подбирать), то можно и подобрать желаемые уровни свечения ламп люстры. Например с помощью 3-х клавишного выключателя и 2-х конденсаторов можно получить 4 уровня свечения ламп. (см схему). Выключено - уровень 1 (Вкл 1) - уровень 2 (Вкл 2) - уровень 3 (Вкл1 + Вкл 2) - уровень 4 (Вкл3). Конденсаторы не нагреваются в процессе работы. Единственный их недостаток - большие габариты для размещения в стене. Также надо подобрать конденсаторы под конкретную мощность используемых ламп. Не забудьте, рабочее напряжение конденсаторов должно быть не ниже 350-400 вольт.

Четвертый способ лишен каких либо недостатков, поскольку использует непосредственное включение ламп без каких либо дополнительных элементов в сети. В этом случае, выключатель просто располагается... на люстре! В продаже имеются «потолочные» выключатели буквально миниатюрного размера (1 х 1 см) и незаметно разместить его в люстре для домашнего мастера труда не составит. Или смонтировать его рядом с люстрой. Лампы люстры подключаются через этот выключатель (см. схему). В этом случае основной выключатель как обычно, управляет общим включением и выключением света «вообще». А вот режим работы люстры задается положением встроенного выключателя. Можно, конечно, рассматривать свисающий с люстры небольшой шнурок как эстетический недостаток. Но можно его и оформить соответствующим образом, в стиле общего оформления комнаты. Либо сделать его совсем незаметным и коротким, с петелькой или колечком на конце. А включение и выключение производить с помощью небольшого стикера с крючочком на конце. В обычные будни переводить люстру в экономичный режим, а по «праздникам» и во время «гостей» - переводить ее в режим парадного света.

Кстати, если вы все же решили использовать регулятор освещения с дистанционным управлением (диммер), не обязательно устанавливать его вместо выключателя. Его так же можно смонтировать непосредственно в люстре или рядом с ней. Т.е. непосредственно на потолке.

Константин Тимошенко

Непрекращающийся «евроремонт» собственной квартиры сейчас стал модным хобби. Появилась даже шутка - Евроремонт нельзя закончить, его можно только прекратить. Одной из составляющих «евроремонта» является установка разнообразных много ламповых светильников, от обычных люстр до подвесных потолков с множеством так называемых, точечных светильников. Всей этой схемотехникой нужно как то управлять, причем так, чтобы можно выбирать различные комбинации включенных и выключенных ламп. Для решения этой задачи «электротехническим способом» необходим какой-то выключатель с множеством клавиш и толстый пучок проводов идущий от него к светильнику. Приобрести такой готовый выключатель весьма сложно, да и стандартной проводки даже трехпроводной (под люстру) для этого не достаточно. А вот «электронным способом» эта задача решается вполне сносно.

На рисунке 1. показана схема для люстры.

Схема устанавливается непосредственно в коробке черенке люстры. Питание и управление на нее поступает по двум проводам от стандартною выключателя. После первого включения выключателем S1 загорается только лампа Н1. Чтобы включать лампы Н2 Н3, Н4 нужно кратковременно выключать и включать S1. После первого включения-выключения S1 зажигается Н4, после второго – Н4 гаснет, но включается Н3 после третьего - горят обе Н4 и НЗ, после четвертого они гаснут, но включается Н2 после пятого - горят Н2 и Н4. после шестого - Н2 и Н3, после седьмого - все горят. Как вы уже поняли, лампы Н2 Н4 переключаются по логике двоичного трехразрядного счетчика, а лампа H1 горит всегда, когда включен S1 независимо от состояния электронной схемы. При первом включении S1 появляется напряжение на конденсаторе С2, которым питается микросхема D1. В этот момент цель C3-R4 делает положительный импульс на вывод 7 D1, чем переводит счетчик в нулевое состояние. На всех его выходах нули, ключи VT1-VT3 закрыты и лампы Н4 Н2 выключены. Выпрямитель источника питания микросхемы состоит из двух частей - D6-C2 и D5-C1 Емкость С1 значительно ниже емкости С2 поэтому, при кратковременном выключении S1 напряжение на С1 падает быстро, а на С2 оно держится значительное время. Если S1 кратковременно выключить, на С1 создастся импульс, который поступает на вход С счетчика D1 и переводит его в следующее состояние. Таким образом, каждое кратковременное выключение S1 будет увеличивать состояние счетчика на единицу. Логические единицы с выходов D1 включают ключи VT1-VT3, которые управляют питанием ламп Н2 Н4

Вторая схема показана на рисунке 2.

Эта схема предназначена для переключения ламп (или групп памп) точечных светильников подвесного потолка. Так же как и схема на рисунке 1 она питается и управляется по двум проводам. Только сетевой выключатель S1 здесь дополнен размыкающей кнопкой S2 чтобы удобнее было переключать, лампы. Кнопка S2-приборная, она установлена на свободной части корпуса наличника выключателя S1. Впрочем, этой кнопки может и не быть - управлять схемой можно и одним только выключателем S1. Схема рассчитана на семь ламп (или семь групп ламп). А управление осуществляется согласно логике кода для семисегментного индикатора. При всей кажущейся хаотичности такого способа переключения ламп семисегментный код (при разумном расположении ламп) позволяет всего максимум за десять шагов добиться оптимального зонирования освещенности. В основе схемы счетчик-дешифратор К176ИЕ4 который, обычно используют в схемах электронных часов частотомеров - там, где нужно подсчитывать импульсы и отображать их число в десятичной форме. Логический ноль на выводе 6 D1 делает активными логические единицы на выходах микросхемы. Особенность микросхемы в том, что вывод 6 управляет скорее не выбором активного уровня, а инверсией выходов. Дело в том, что выходы К176ИЕ4 (равно как и K176ИЕ3) сделаны по закрытой схеме, а не по схеме с открытом коллектором (или с открытым стоком) как это бывает в других дешифраторах. Поэтому выключенный выход переходит не высокоомное состояние, а в противоположный логический уровень. Таким образом, если мы сменим уровень на выводе 6, например, переключим ею на плюс питания, схема останется работоспособной, но логика переключения ламп станет обратной. Обе схемы собраны на печатных макетных платах размерами 72x59 мм. Такие платы часто бывают в продаже на них по 546 дырок с крутыми печатными площадками с одной стороны платы. Дырки расположены ровными рядами с шагом в 2 5 мм, поэтому платы пригодны для установки любых микросхем в корпусах DIP в любом месте платы, а так же других деталей. Но под выводы диодов КД226 и резистора R1 отверстия нужно расширить (расковырять шилом или рассверлить до нужного диаметра). При суммарной мощности ламп до 200 Вт можно использовать в выпрямителе диоды КД226. При большей мощности потребуются более мощные диоды и возможно радиаторы для них. При мощности каждой лампы (или группы ламп) подключенной к одному транзистору до 75 Вт транзистору RUZ90A не требуется радиатор Печатная плата питается от той же цепи что и лампы, поэтому чтобы избежать прокладывания дополнительных проводов плату желательно расположить непосредственно в «объекте управления» - в корпусе люстры или в нише подвесного потолка. Данные схемы можно сделать на основе других «полевых» микросхем, используя другие типы счетчиков или D триггеры регистры.

Радиоконструктор №12 2007г стр. 24