3 разрядный 7 сегментный индикатор протон. Как работает семисегментный индикатор

Делаем цифровую шкалу

Немножко теории
Наверное нет необходимости рассказывать, что такое 7-сегментные индикаторы. Как сложно и представить область техники, где они не применяются. Соответственно по их подключению написано масса статей, но попробую все таки написать свою:)
Итак: что же такое 7-сегментный индикатор?
Обратимся к Википедии: "Семисегме́нтный индика́тор - устройство отображения цифровой информации. Это - наиболее простая реализация индикатора, который может отображать арабские цифры.
Семисегментный индикатор, как говорит его название, состоит из семи элементов индикации (сегментов), включающихся и выключающихся по отдельности. Включая их в разных комбинациях, из них можно составить упрощённые изображения арабских цифр. Часто семисегментные индикаторы делают в курсивном начертании."


Сегменты обозначаются буквами от A до G; восьмой сегмент - десятичная точка (decimal point, DP), предназначенная для отображения дробных чисел.

По сути говоря данный индикатор - это 8 светодиодов расположенных на панели определенным образом.
Соответственно самая простая схема включения - подсоединить все 8 ножек на выводы микроконтроллера (микросхемы - дешифратора) через балластные резисторы, а на общий провод подавать либо "+" (для индикаторов с общим анодом) либо "-" (для индикаторов с общим катодом).
Пример подключения индикатора с общим анодом для схемы индикации включенной передачи АКПП Лансера приведен ниже



А как быть, если нужно выводить не 1 цифру, а 2,3,4 и более?
И вот тут на помощь приходит человеческая психика. Если мозгу показать несколько быстросменяющихся изображений, то он не успев обработать каждое по отдельности "сольет" их вместе. Этот принцип лег в основу мультипликации. Т.е. для вывода нескольких разрядов (нескольких цифр) нужно подключить к микроконтроллеру не только провода сегментов, но и общие провода каждого из разрядов. Тогда чтобы вывести первый разряд (опять же для схемы с общим анодом) нужно подать "+" только на общий провод первого разряда и "-" на нужные провода сегментов. Задержать изображение на 2-3 милисекунды, переключится на второй разряд и проделать то же самое с ним, поле чего перейти на третий (четвертый и т.д.) или вернутся к первому. Проделывая все это достаточно быстро мы получим в мозгу единую картинку, где все разряды горят одновременно. Для схемы с общим катодом, соответственно, перекидывать нужно "-".



Кстати, транзисторы в этой схеме необязательны - можно подключить выводы индикатора непосредственно к выводам микроконтроллера и затем не подавать на них напряжение (выводы 8-10 данной схемы), а наоборот "притягивать к земле" выводя на них "низкое" напряжение или попросту говоря 0. А "высокое" напряжение (или 1) подается на общие выводы разрядов, которые не должны в данный момент гореть.
Более подробно о таком способе подключения написано здесь - arduino-kit.com.ua/instru…-indikator-i-arduino.html

В чем же "бяка" данной схемы? А в том, что для вывода например трехразрядного числа нужно задействовать 11 ножек микроконтроллера, причем 7 из них, чтобы не раздувать программу, должны относится к одному порту.
Все это хорошо, но, например, у Attiny2313 такой только порт В на котором "висят" и оба входа аналогового компаратора.
И вот тут на помощь приходят специальные драйверы.
Чаще всего применяют драйвера MAX7219 и MAX7221, управляемые по SPI. Материал по работе с этими драйверами разместил недавно serdgos тут - . Поэтому повторятся не буду - желающие могут почитать. Данные драйвера позволяют уменьшить количество задействованных выводом, но опять же требуют использования дополнительной библиотеки и "привязаны" к строго определенным ножкам микроконтроллера. А есть ли более "хардкорные" решения? Оказывается есть - драйвер CD4026.

Описание Драйвера
Чип CD4026 предназначен для управления 7-сегментными индикаторами и представляет собой счётчик до десятка с встроенным сдвиговым регистром.

Счётчик увеличивается на единицу всякий раз, когда контакт «clock» становится HIGH (на восходящем фронте). Выходы a-g становятся HIGH в соответствии со значением счётчика, и отражают его значение арабской цифрой при подключении 7-сегментного индикатора с общим катодом.


Контакт «reset» должен быть притянут к земле в общем случае. Когда он становится HIGH, счётчик сбрасывается в ноль.
Контакт «disable clock» также должен быть притянут к земле в общем случае. На время пока он HIGH сигналы на контакт «clock» игнорируются.
Контакт «enable display» должен снабжаться напряжением питания. Иначе выходы a-g будут выставлены в LOW. Контакт «enable out» возвращает его значение с небольшой задержкой.
Контакт «÷10» (обозначен как h в таблице) принимает HIGH для значений 0-4 и LOW для 5-9. Его выход может быть отправлен на вход «clock» следующего 7-сегментного драйвера, чтобы организовать счётчик числа с несколькими разрядами.
Контакт «not 2» принимает значениние LOW тогда и только тогда, когда значение счётчика - 2. В остальных случаях он HIGH.
Рабочее напряжение питания: 3-15 В.

В качестве источника сигнала выступал Arduino Pro Micro c задействованными выводами
Pin2 Выход на счетчик
Pin3 Сброс счетчика
Pin4 Подключение разряда 1
Pin6 Подключение разряда 2
Pin9 Подключение разряда 3
Точку не подключал, ибо сейчас ненужно, а принцип подключения тот же.

Программа
Так как задействовано Arduino. то и язык соответствующий - модифицированный С.
Прога секундомера, считающего секунды с момента включения, "накидана по быстрячку" чтобы проверить работоспособность, поэтому слегка корява - уж извините.

#define CLOCK_PIN 2
#define RESET_PIN 3
#define DIGIT_1PIN 4
#define DIGIT_2PIN 6
#define DIGIT_3PIN 9

void resetNumber()
{
// Для сброса на мгновение ставим контакт
// reset в HIGH и возвращаем обратно в LOW
digitalWrite(RESET_PIN, HIGH);
digitalWrite(RESET_PIN, LOW);
digitalWrite(DIGIT_1PIN, HIGH);
digitalWrite(DIGIT_2PIN, HIGH);
digitalWrite(DIGIT_3PIN, HIGH);
}
void showNumber(float t)
{ int n;
// Первым делом обнуляем текущее значение
resetNumber();
// Выводим первый разряд
digitalWrite(DIGIT_1PIN, LOW);
n=int(t-int(t/10)*10);

// значения
while (n--) {

digitalWrite(CLOCK_PIN, LOW);
}
delay(2);
// Обнуляем счетчик
resetNumber();
// Выводим второй разряд
digitalWrite(DIGIT_2PIN, LOW);
n=int(t/10-int(t/100)*10);
// Далее быстро «прокликиваем» счётчик до нужного
// значения
while (n--) {
digitalWrite(CLOCK_PIN, HIGH);
digitalWrite(CLOCK_PIN, LOW);
}
delay(2);
// Обнуляем счетчик
resetNumber();
// Выводим третий разряд
digitalWrite(DIGIT_3PIN, LOW);
n=int(t/100);
// Далее быстро «прокликиваем» счётчик до нужного
// значения
while (n--) {
digitalWrite(CLOCK_PIN, HIGH);
digitalWrite(CLOCK_PIN, LOW);
}
delay(2);

}
void setup() {
pinMode(RESET_PIN, OUTPUT);
pinMode(CLOCK_PIN, OUTPUT);
pinMode(DIGIT_1PIN, OUTPUT);
pinMode(DIGIT_2PIN, OUTPUT);
pinMode(DIGIT_3PIN, OUTPUT);

// Обнуляем счётчик при старте, чтобы он не оказался
// в случайном состоянии
resetNumber();
}

// Основной цикл
void loop()
{
showNumber((millis() / 1000));
}

Ну и результат

Можно еще сократить количество выводов, задействовав сдвиговые регистры, но об этом мы поговорим отдельно:)

1 год

В этой статье мы поговорим о цифровой индикации.
Семисегментные светодиодные индикаторы предназначены для отображения арабских цифр от 0 до 9 (рис.1).

Такие индикаторы бывают одноразрядные, которые отображают только одно число, но семисегментных групп, объединенных в один корпус может быть и больше (многоразрядные). В этом случае цифры разделяются децимальной точкой (рис.2)



Рис.2.

Индикатор называется семисегментным из-за того, что отображаемый символ строится из отдельных семи сегментов. Внутри корпуса такого индикатора находятся светодиоды, каждый из которых засвечивает свой сегмент.
Буквы и другие символы на таких индикаторах отображать проблематично, поэтому для этих целей используются 16-сегментные индикаторы.

Светодиодные индикаторы бывают двух типов.
В первом из них все катоды, т.е. отрицательные выводы всех светодиодов, объединены вместе и для них выделен соответствующий вывод на корпусе.
Остальные выводы индикатора соединены к аноду каждого из светодиодов (рис.3, а). Такая схема называется «схема с общим катодом».
Также существуют индикаторы, у которых светодиоды каждого из сегментов подключены по схеме с общим анодом (рис.3, б).



Рис.3.

Каждый сегмент обозначен соответствующей буквой. На рисунке 4 представлено их расположение.

Рис.4.

В качестве примера рассмотрим двухразрядный семисегментный индикатор GND-5622As-21 красного свечения. Кстати существуют и другие цвета, в зависимости от модели.
С помощью трехвольтовой батарейки можно включать сегменты, а если объединить группу выводов в кучку и подать на них питание, то можно даже отображать цифры. Но такой метод является неудобным, поэтому для управления семисегментными индикаторами используют регистры сдвига и дешифраторы. Также, нередко, выводы индикатора подключаются напрямую к выходам микроконтроллера, но лишь в том случае когда используются индикаторы с низким потреблением тока. На рисунке 5 представлен фрагмент схемы с использованием PIC16F876A.



Рис.5.

Для управления семисегментным индикатором часто используется дешифратор К176ИД2.
Эта микросхема способна преобразовать двоичный код, состоящий из нулей и единиц в десятичные цифры от 0 до 9.

Чтобы понять, как все это работает, нужно собрать простую схему (рис.6). Дешифратор К176ИД2 выполнен в корпусе DIP16. Он имеет 7 выходных вывода (выводы 9 - 15), каждый из которых предназначен для определенного сегмента. Управление точкой здесь не предусмотрено. Также микросхема имеет 4 входа (выводы 2 - 5) для подачи двоичного кода. На 16-й и 8-ой вывод подается плюс и минус питания соответственно. Остальные три вывода являются вспомогательными, о них я расскажу чуть позже.



Рис.6.

DD1 - К176ИД2
R1 - R4 (10 - 100 кОм)
HG1 - GND-5622As-21

В схеме присутствует 4 тумблера (можно любые кнопки), при нажатии на них на входы дешифратора подается логическая единица от плюса питания. Кстати питается сама микросхема напряжением от 3 до 15 Вольт. В данном примере вся схема питается от 9-вольтовой "кроны".

Также в схеме присутствует 4 резистора. Это, так называемые, подтягивающие резисторы. Они нужны, чтобы гарантировать на логическом входе низкий уровень, при отсутствии сигнала. Без них показания на индикаторе могут отображаться некорректно. Рекомендуется использовать одинаковые сопротивления от 10 кОм до 100 кОм.

На схеме выводы 2 и 7 индикатора HG1 не подключены. Если подключить к минусу питания вывод DP, то будет светиться децимальная точка. А если подать минус на вывод Dig.2, то будет светиться и вторая группа сегментов (будет показывать тот же символ).

Входы дешифратора устроены так, что для отображения на индикаторе чисел 1, 2, 4 и 8 требуется нажатие лишь одной кнопки (на макете установлены тумблеры, соответствующие входам D0, D1, D2 и D3). При отсутствии сигнала отображается цифра ноль. При подаче сигнала на вход D0 отображается цифра 1. И так далее. Для отображения других цифр требуется нажатие комбинации тумблеров. А какие именно нужно нажимать нам подскажет таблица 1.


Таблица 1.

Чтобы отобразить цифру "3" необходимо логическую единицу подать на вход D0 и D1. Если подать сигнал на D0 и D2, то отобразится цифра "5" (рис.6).



Рис.6.

Здесь представлена расширенная таблица, в которой мы видим не только ожидаемую цифру, но и те сегменты (a - g), которые составят эту цифру.



Таблица 2.

Вспомогательными являются 1, 6 и 7-ой выводы микросхемы (S, M, К соответственно).

На схеме (рис.6) 6-ой вывод "М" заземлен (на минус питания) и на выходе микросхемы присутствует положительное напряжение для работы с индикатором с общим катодом. Если используется индикатор с общим анодом, то на 6-ой вывод следует подать единицу.

Если на 7-ой вывод "К" подать логическую единицу, то знак индикатора гасится, ноль разрешает индикацию. В схеме данный вывод заземлен (на минус питания).

На первый вывод дешифратора подана логическая единица (плюс питания), что позволяет отображать преобразованный код на индикатор. Но если подать на данный вывод (S) логический ноль, то входы перестанут принимать сигнал, а на индикаторе застынет текущий отображаемый знак.

Стоит заметить одну интересную вещь: мы знаем, что тумблер D0 включает цифру "1", а тублер D1 цифру "2". Если нажать оба тумблера, то высветится цифра 3 (1+2=3). И в других случаях на индикатор выводится сумма цифр, составляющих эту комбинацию. Приходим к выводу, что входы дешифратора расположены продуманно и имеют очень логичные комбинации.

Также вы можете посмотреть видео к этой статье.

По просьбе трудящихся решил я рассказать о замечательной вещи под названием 7-ми сегментный светодиодный индикатор. Для начала что это такое. Вот такая вот штука. Это один разряд, так же бывают двух разрядные, трех и четырех разрядные. Видел еще шести разрядные. После каждого разряда стоит десятичная точка. Если разрядов четыре, то чаще всего после второго разряда можно встретить двоеточие для индикации секунд, при выводе времени. Разобравшись с железками давайте перейдем к изучению схемы. Что вообще такое динамическая индикация и зачем она нужна. Так-как индикатор 7-ми сегментный, то для отображения цифры используется всего 7 сегментов. Обозначаются они всегда латинскими буквами A, B, C, D, E, F, G и DP Смотрим картинку. Под каждым сегментом расположен светодиод. Все светодиоды одним концом объеденены. Либо анодами либо катодами, а противоположные концы выведены наружу. Легко заметить что для отображения цифры необходимо использовать 8 выводов. Один общий и семь для сегментов. Если это касается одного разряда, то тут думать не о чем, просто вешаем все на один порт. А если разрядов четыре? Восемь помножим на четыре будет тридцать два. О... Да над таким индикатором 32 мега будет одна корпеть. Так дело не пойдет. Есть два решения. Наша с вами динамическая индикация либо статическая. Что бы дальше разбираться, давайте посмотрим схему включения индикатора.


Данная схема подразумевает динамическую индикацию. Да что я все динамическая да статическая. В чем разница?. Статическая индикация - это когда мы задали каждому разряду по своей цифре и она постоянно горит, а динамическая - это когда мы выводим цифру в первый разряд, потом его гасим и выводим во второй разряд, потом его гасим и выводим в третий разряд и так далее пока не закончатся разряды. После последнего разряда переходим опять к первому и так по кругу. Если это делать медленно то можно будет лицезреть цифровую бегущую строку, а если увеличить скорость к примеру до 50 Гц, то уже мерцания глаз не увидит. Вот таким образом и работает динамическая индикация. Давайте теперь разберем схему. Слева МК ATmega8 за ней на порту D висит микросхема 74ALS373. Зачем она нужна? Дело в том что индикатор это просто 8 светодиодов собранных в некую матрицу. То есть индикатор можно представить в виде линейки из 8 светодиодов. А как известно светодиоды кушают по отношению к МК ого го сколько. Конечно не возбраняется подключение напрямую, но лучше поставить между МК и индикатором какой-нибудь ретранслятор. Вот для этих целей я и решил использовать 8-и разрядный буфер с защелкой. Почему именно его. С учетом того что индикатор я использую с общим анодом, то есть для задачи цифры активный уровень 0, то можно было бы смело использовать микросхему ULN2003A(7 транзисторных сборок по схеме Дарлингтона) и не париться с буфером, но... Но в том что ULN2003A имеет на борту только NPN транзисторы и я могу использовать индикатор только с общим анодом, а если нужно поставить с общим катодом? Вот тут и поможет буфер, так как что я туда напишу, то и будет на выходе. Хочешь 0, хочешь 1. Управляющие ножки подключены в режиме транслятора. То есть буфер выводит на выход тоже самое что и на входе. Аля псевдо гальваническая развязка. За буфером следуют токоограничивающие резисторы. Помним, это светодиоды и без резисторов сгорят. Номинал резисторов нужно подбирать чуть меньше чем допустимо. Дело в том что динамическая индикация выводит символы с некой частотой и она с родни ШИМу, то есть чем выше частота, тем выше так сказать контрастность. И при максимально комфортной контрастности цифры будут светить чуть тускнее. По этому резисторы нужно брать чуть меньшего номинала. Я использовал 360Ом только потому что у меня такие были в наличии. Далее после резисторов наш индикатор. С другой стороны, где аноды, я подключил первые четыре разряда порта С. Так, со схемой вроде разобрались. Теперь давайте обсудим алгоритм программы. Для того чтобы поочередно включать разряды индикатора, напишем отдельную функцию и будем ее бесконечно вызывать в основном теле программы. Конкретнее, функция будет получать число от 0 до 9999, рабирать его на разряды и потом выводить каждый разряд на своем месте. Если число имеет количество разрядов меньше 4, то пустышки слева будем заполнять нулями. Ровняемся по правому краю. Бегать по разрядам будем слева направо. Чтобы было видно какие-нибудь действия, то мы используя прерывания от счетчика, раз в секунду будем увеличивать выводимое число на единицу. Так задача поставлена, к бою. #define F_CPU 7372800UL // Частота кварца #include #include #include volatile unsigned int test = 9980; // Переменная для вывода на индикатор ISR(TIMER1_COMPA_vect) // Обработчик прерывания по совпадению таймера 1 { test++; // Увеличить выводимое число if(test > 9999) test = 0; // Если вышел за пределы четырех разрядов, обнулить TCNT1H=0x00; // Сброс регистра TCNT1L=0x00; // счета } void dig_out(int num); // Объявление функции вывода на индикатор int main(void) { DDRC = 0x0F; // Настройка портов DDRD = 0xFF; // для работы с индикатором Порт С для разрядов, Порт D для цифр TCCR1A=0x00; // Настройка таймера TCCR1B=0x04; TCNT1H=0x00; TCNT1L=0x00; OCR1AH=0x70; OCR1AL=0x80; TIMSK=0x10; sei(); // Разрешение прерываний while(1) { dig_out(test); //Постоянно вызываем функцию вывода текущего числа } } void dig_out(int num) // Функция для вывода на индикатор 4-х разрядов { unsigned char i = 0; // Переменная счетчика unsigned char raz = 1; // Номер разряда unsigned char dig_num = {0x40, 0x79, 0x24, 0x30, 0x19, 0x12, 0x02, 0x78, 0x00, 0x10}; // Коды цифр для индикатора с общим анодом unsigned char dig = {0, 0, 0, 0}; // Массив для значения разряда if(num { dig =0; dig =0; dig =0; } if(num // Для заполнения нулями левых разрядов { dig =0; dig =0; } if(num // Для заполнения нулями левых разрядов { dig =0; } while(num > 999) // Получение количества тысяч { dig++; num -= 1000; } while(num > 99) // Получение количества сотен { dig++; num -= 100; } while(num > 9) // Получение числа десятков { dig++; num -= 10; } dig = num; // Получения количества единиц while(raz // Крутимся пока не заполним все 4 разряда { PORTC = raz; // Выбираем разряд PORTD = dig_num]; // Выводим цифру raz = raz// Сдвигаемся на следующий разряд i++; // Увеличиваем индекс следующей цифры _delay_ms(1); // Задержка 1 мс } } Вот и весь код. Расписывать его не буду так как он имеет комментарии к каждой строке. Ниже можно скачать архив с проектом под AtmelStudio6.2 Если все же возникнут вопросы, то милости просим на форум. Ну и для самых привередливых ниже видео все этой балалайки))).

Сегодня в статье я хочу реализовать основу для нового простенького проекта – погодный термометр. Мой старый аналоговый градусник видимо сломался и показывает сейчас +16, хотя за окном в самом разгаре осень и gismeteo утверждает, что сейчас не теплее +3 — +4 градусов. В связи с этим я решил сделать цифровой термометр, из запчастей не хватает только самого градусника – его уже заказ и через пару недель, когда товар приедет, будет . А пока можно разобраться с выводом информации, для этих целей у меня завалялся 4-разрядный 7-сегментный индикатор hs420561k-32. Есть куда более удачные и прокаченные версии подобных индикаторов, с уже встроенными микрочипами управления. Но с такими модулями не интересно разбираться, там всего 4 или 5 ног – две и которых это питание. Мне, как новичку, куда больше доставляет удовольствия разбираться во всем самому. И индикатор hs420561k-32 в этом отношении меня полностью устраивает. Ниже приведена фотография собранной на макетной плате схемы.

Что такое 4-разрядный 7-сегментный индикатор hs420561k-32

Как можно увидеть на фото, 4-разрядный 7-сегментный индикатор идеально подходит для задуманного прибора. Один разряд будет отвечать за вывод минуса, при необходимости, второй и третий разряд оставим для вывода градусов, а четвертый будет просто для красоты, всегда выводить значок градусов.

В первую очередь нужно разобраться, как работает индикатор. У модуля 12 ног, 4 из них являются катодами, и каждый отвечает за один разряд из четырех – на какую ногу будет подан минус, тот разряд и будет активным. 8 других являются анодами и каждая отвечает за один из 7 сегментов и за точку внизу цифры. Таким образом, мы можем управлять каждым сегментом и разрядом. Единственная проблема кроется в том, что выводить можно одновременно только одну цифру на каждом разряде. Побороть это не сложно, достаточно просто за очень короткий промежуток времени по очереди выводить нужную информацию на каждый из разрядов. Человеческий глаз не сможет уловить переключение и будет казаться, что одновременно горят все разряды. Даже фотокамера не смогла это уловить – это видно по фотографии, которую я прикладывал выше.
Посмотреть какая нога индикатора за что отвечает, можно по картинке ниже.


Для удобства работы и чтобы закрепить знания из прошлой статьи про сдвиговый регистр я решил использовать в схеме микросхему 74HC595. Это снизит количество задействованных пинов ардуино. Ниже я привел схему подключений, она получилось кривая, надеюсь, со временем я научусь рисовать их качественней:). P.S. На схеме я не нарисовал 3 резистора — пропустил, их нужно добавить между пинами arduino и ножками hs420561k-32 с именами A, F и B.


Что использовалось в проекте

  • Arduino (я использовал arduino nano, но можно любую другую). Покупал тут: arduino nano
  • Дисплей hs420561k-32. Покупал тут: Аналог дисплея hs420561k-32
  • 1 Сдвиговый регистр 74HC595. Покупал тут: сдвиговые регистры 10 штук
  • 8 резисторов сопротивлением 300 Ом. Покупал тут:набор резисторов 700 шт. От 10 Ом до 1 МОм
  • Несколько соединительных проводов. Покупал тут: соединительные провода
  • Макетная плата. Я использовал с 830 отверстиями. Покупал тут: макетная плата

Скетч для управлением индикатором hs420561k-32

Теперь остается только написать скетч, его код приведен ниже, а также доступен для скачивания тут: скачать .

//Пин подключен к SH_CP входу 74HC595 int clockPin = 6; //Пин подключен к ST_CP входу 74HC595 int latchPin = 7; //Пин подключен к DS входу 74HC595 int dataPin = 8; // Пины разрядов цифер int pins_numbers = {2, 3, 4, 5}; // Биты для отображения цифер от 0-9, минуса и символ градуса цельсия byte numbers_array = { B00111111, B00000110, B01011011, B01001111, // 0 1 2 3 B01100110, B01101101, B01111101, B00000111, // 4 5 6 7 B01111111, B01101111, B01000000, B01100011 // 8 9 - о }; void setup() { //устанавливаем режим OUTPUT pinMode(latchPin, OUTPUT); pinMode(clockPin, OUTPUT); pinMode(dataPin, OUTPUT); for(int i; i<4; i++){ pinMode(pins_numbers[i], OUTPUT); } } void loop() { // включить сразу несколько цифр нельзя, поэтому очень быстро показываем по одной showNumber(1, 11); showNumber(2, 7); showNumber(3, 2); showNumber(4, 10); } void showNumber(int numNumber, int number){ // зажигаем нужные сегменты digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, numbers_array); digitalWrite(latchPin, HIGH); // включаем нужный разряд(одну из четырех цифр) int num_razryad = pins_numbers; for(int i; i<4; i++){ // выключаем все digitalWrite(pins_numbers[i], HIGH); } // включаем нужную digitalWrite(num_razryad, LOW); delay(5); }

Автор Белов А. В.

В данной статье рассматриваются различные способы подключения к микроконтроллеру семисегментных светодиодных индикаторов.

Для того, что бы микропроцессорное устройство было способно выводить информацию в виде цифр и знаков удобно использовать семи сегментные светодиодные индикаторы. Существует огромное множество различных моделей светодиодных индикаторов, разных размеров, цвета свечения. Существуют как индикаторы представляющие собой отдельный один разряд, для индикации всего одной цифры, так и многоразрядные индикаторные панели. В зависимости от модели и схема подключения может быть разной. Кроме того, все индикаторы делятся на две большие группы. Это индикаторы с общим анодом и индикаторы с общим катодом. Схема подключения одиночного индикатора с общим анодом изображена на рисунке 1.

Рис. 1. Подключение одного индикатора

Сегменты индикатора подключены непосредственно каждый к своему выходу порта PB микроконтроллера. Общий анод всех сегментов подключается к источнику питания. На схеме показан вариант питания индикатора от того же источника +5В, от которого питается сам микроконтроллер. Для уменьшения нагрузки на стабилизатор напряжения можно запитать индикатор до стабилизатора. Для того, что бы высветить на индикаторе ту либо иную цифру микроконтроллер просто программирует все выводы порта PB на выход а затем по мере необходимости выводит в порт код, соответствующий выбранному символу. При этом каждый разряд порта отвечает за свой сегмент индикатора. Если в соответствующий разряд выводится логическая единица, то сегмент остается погашенным. Если в разряд выводится логический ноль, то соответствующий сегмент зажигается. Остается подобрать коды таким образом, что бы засветившиеся разряды высветили нужный нам символ.

Для большинства случаев одного разряда индикатора явно не хватает. Подключать же несколько разрядов, каждый к своим выводам явно не получится. Даже самый большой микроконтроллер AVR имеет всего четыре полных порта ввода вывода. Поэтому единственным способом подключения многоразрядных семи сегментных индикаторов к микроконтроллеру является матричный способ. Этот способ очень похож на матричное подключение кнопок клавиатуры, о котором подробно написано в статье "Подключение кнопок". На рисунке 2 показан один из вариантов подключения дисплея из двух семисегментных индикаторов.


Рис. 2. Подключение дисплея

Приведенная схема рассчитана на световые семи сегментные индикаторы небольшой мощности с током потребления не больше 40 мА. Для более мощных индикаторов нужно применять транзисторные ключи. Обратите внимание, что каждый из выходов порта PB микроконтроллера подключен к одноименным сегментам обоих индикаторов. Так вывод PB0 через резистор R1 подключен к выводу сегмента A индикатора HL1 и индикатора HL2. Выход PB1 через резистор R2 подключен к сегментам B обоих индикаторов и так далее. Выбор одного из индикаторов осуществляется посредством двух старших разрядов порта PD. Общий анод индикатора HL1 подключен к выводу PD6, а общий анод индикатора HL2 к выводу PD5. Такая схема включения называется матрицей. Выводы порта PB можно рассматривать, как восемь горизонтальных линий, а два выхода порта PD, как вертикальные линии матрицы. В точках пересечения каждой линии включен один светодиодный сегмент.

Подобная схема включения индикатора всегда работает в режиме динамической индикации. Динамическая индикация состоит в том, что микропроцессор постоянно с достаточно высокой частотой высвечивает символ сначала в первом, а затем во втором разряде индикатора. При частоте переключения выше 24 герц глаз не замечает мерцания и воспринимает изображение на обоих индикаторах как одно статическое изображение. По такому принципу давно уже работают большинство семи сегментных дисплеев в самых различных электронных устройствах.

Для реализации режима динамической индикации процессор должен организовать постоянный цикл. Обычно для этого используют встроенный таймер. Таймер настраивается таким образом, что бы выдавать прерывание с определенной частотой, выбранной для динамической индикации. Каждый раз, при вызове прерывания контроллер выдает изображение символа в новый разряд индикатора. Для этого в порт PB контроллер выставляет код, соответствующий нужному символу, а в соответствующий разряд порта PD (PD5 или PD6) выставляет логическую единицу. В тот разряд, который должен быть потушен, подается логический ноль. На этом обработка прерывания заканчивается, контроллер переходит к выполнению основной программы, а выставленные на выводы порта сигналы так и остаются до следующего прерывания. И все это время в соответствующем разряде индицируется нужный символ. Когда возникает следующее прерывание, в порты выводятся сигналы, которые выводят на индикацию изображение другого разряда индикатора.

На рисунке 2 приведена схема, содержащая всего два разряда индикации. Точно так же можно подключить три, четыре и более разрядов. В случае применения микроконтроллера ATtiny2313 максимальное количество разрядов - 7. Так как порт PD этого контроллера имеет всего семь выводов. В этом случае в процессе индикации только на один из разрядов порта PD подается логическая единица, а на все остальные логический ноль.

Нужно заметить, что в данной схеме выводы PD5 и PD6, к которым подключены общие аноды индикаторов находится под самой большой нагрузкой. Ток протекающий через каждый из них зависит от индицируемого символа и в том случае, когда зажигаются сразу все сегменты в восемь раз больше, чем ток одного сегмента. Такой ток легко может превысить максимально допустимый ток для одного выхода. Однако, во-первых, этот ток носит импульсный характер и среднее значение тока гораздо меньше. А во-вторых, практика показывает, что микроконтроллеры AVR имеют значительный запас по мощности и свободно выдерживают такие нагрузки.

Все вышесказанное относится к индикатором с общим анодом. Что бы зажечь такие индикаторы на общий провод следует подавать плюс источника питания, а на выводы сегментов – минус (соединять с общим проводом). Но бывают другие индикаторы, построенные по схеме с общим катодом. Рассмотрим, как использовать этот тип индикаторов. Схему на рис 1 придется немного переделать. Переделка сведется лишь к тому, что общий анод индикатора нужно отключить от источника +5В и подключить на общий провод. Немного изменится и алгоритм работы. Теперь для того, что бы зажечь сегмент на него нужно подать логическую единицу, а что бы потушить - логический ноль. Схему на рис. 2 переделывать не нужно. Изменится лишь алгоритм. Просто фаза всех сигналов должна поменяться. Там, где раньше мы подавали ноль, теперь нужно подать единицу и наоборот.

Управление ЖКИ (LCD) индикаторами

Автор Белов А. В.

В данной статье рассматривается пример подключения жидкокристаллического индикатора (сокращенно ЖКИ или LCD) к микроконтроллеру.

Сегодня на рынке электронных компонентов можно найти огромное количество индикаторов разных фирм и модификаций. Каждый индикатор имеет свои особенности, свою внутреннюю архитектуру и свой интерфейс для подключения к микроконтроллеру. Однако общие принципы подключения примерно одинаковы. Сразу отметим, что все ЖКИ можно разделить на индикаторы со встроенным контроллером и простые индикаторы без микроконтроллера. Индикаторы с микроконтроллером более предпочтительны для самостоятельного применения. Встроенный микроконтроллер уже содержит в себе сложные программы, выполняющие большинство операций по выводу изображения на индикатор и учитывающий все специфические особенности именно этой индикаторной панели. А интерфейс связи встроенного контроллера обычно совсем не сложный и позволяет легко подключить его к любому универсальному контроллеру. Возмем для примера микроконтроллер Российского производства МТ-10Т7-7. Это простой индикатор, дисплей которого представляет собой строку из десяти семисегментных знакомест. Напряжение питания такого индикатора от 3 до 5 вольт. Ток потребления 30 мкА. Габаритные размеры 66 X 31,5 X 9,5 мм. Схема подключения такого индикатора к микроконтроллеру приведена на рисунке 1.

Рис. 1. Подключение ЖКИ к микроконтроллеру

Для управления индикатором используется порт PB. Линии PB0...PB3 образуют шину данных/адреса. А линия PB4 используется для передачи на индикатор сигнала записи. Выход PB6 используется для выбора адрес/данные. Команды управления передаются на индикатор следующим образом. Сначала необходимо передать адрес разряда, куда мы хотим записать код очередного выводимого символа. Адрес состоит из одного четырехбитного двоичного числа. Нумерация разрядов ведется слева на право. Самый левый (старший) разряд имеет адрес 0 (00002). Следующий разряд имеет адрес 1 (00012). Последний, самый правый, десятый разряд имеет адрес 9 (10012). Для того, что бы записать адрес в контроллер индикатора необходимо, что бы на его A0 присутствовал сигнал логического нуля. Значение адреса выставляется на выходах PB0...PB3. А затем на выход PB4 кратковременно подается единичный сигнал, который поступает на вход WR1 индикатора. По фронту этого импульса адрес записывается в индикатор и запоминается в его внутренней памяти. Теперь, если в индикатор будет записан байт данных, он поступит именно по этому адресу.

Байт данных определяет изображение знака, которое высветится в соответствующем разряде индикатора. Каждый бит этого байта отвечает за свой сегмент в семисегментном поле. Восьмой бит отвечает за высвечивание десятичной точки. Для передачи байта данных на входе A0, а значит и на выходе PB6 должен присутствовать сигнал логической единицы. Байт данных передается в индикатор за два приема. Сначала на выводах PB0...PB3 выставляется младший полубайт. По сигналу на WR1 он записывается в память индикатора. Затем, на тех же выходах (PB0...PB3) выставляется старший полубайт и тоже записывается по сигналу на WR1. После записи второго (старшего) полубайта изображение появляется в соответствующем разряде индикатора, а адрес во внутренней памяти индикатора автоматически увеличивается на единицу. Таким образом, для записи данных в следующий разряд индикатора уже не надо передавать в него адрес. Весь процесс записи адреса и данных в индикатор изображен на рисунке 2.


Рис. 2. Диаграмма работы интерфейса индикатора

На этом рисунке представлены два варианта работы с индикатором. Запись одного знакоместа и запись нескольких знакомест подряд. Переменный резистор R1 (см. схему на рис. 1) предназначен для регулировки контрастности дисплея. Для того, что бы изображение на индикаторе было хорошо видно, нужно выставить самую подходящую контрастность наблюдая изображение на экране индикатора. Для разной освещенности и разного угла зрения ручку регулятора придется выставлять в разные положения. Хорошо видное изображение в других при изменившихся условиях наблюдения может стать абсолютно не видимым. Что бы увидеть его нужно покрутить ручку регулятора в разные стороны.

В заключении хочу отметить, что именно эти выводы порта для управления индикатором выбраны абсолютно произвольно. В данном случае автор руководствовался удобством разводки печатной платы. Вы же можете выбрать любые другие выводы и даже другой порт ввода вывода микроконтроллера.

Последнее обновление (01.05.2008 г.)

Подключение энкодера

Автор Белов А. В.

Из этой статьи вы узнаете, что такое энкодер, чем он отличается от переменного резистора и как он помогает при помощи простого поворота ручки вводить информацию в микроконтроллер.

В связи с тотальным переходом к микропроцессорному управлению бытовыми и другими электронными приборами изменились и органы регулировки, применяемые в этих приборах. Если раньше для того, что бы отрегулировать громкость радиоприемника или телевизора вы должны были просто покрутить соответствующую ручку, то теперь вы зачастую вынуждены пользоваться двумя кнопками: "Громкость +" и "Громкость -". А если нужно регулировать не только громкость? Для многих пользователей это просто не удобно. К тому же страдает оперативность регулировки. Нажав кнопку уменьшения громкости нужно еще подождать какое то время, пока громкость доползет до нужного уровня. И все это время приходится страдать от громкого звука. Совместить преимущества традиционных регуляторов и при этом не потерять новые возможности, которые нам дают микроконтроллеры призвано новое устройство ввода информации, которое получило название энкодер. По внешнему виду и установочным размерам энкодер очень похож на обычный переменный резистор, который использовался в традиционных аналоговых устройствах. Но по внутреннему устройству он кардинально отличается. Энкодер так же, как и резистор имеет выступающую вперед ось, на которую можно надеть такую же самую ручку, какую обычно одевают на резистор. Вращение рукоятки энкодера приводит к вырабатыванию им последовательности импульсов, которые затем поступают на микроконтроллер и дают ему информацию о том, на сколько нужно уменьшить либо увеличить то либо иное значение. Например, насколько нужно увеличить или уменьшить громкость сигнала и т.п. Причем устройство энкодера таково, что микроконтроллер может различать не только величину, на которую нужно изменить параметр, но и направление этого изменения. Это позволяет, например, при вращении оси энкодера в одну сторону увеличивать громкость, а при вращении в другую - уменьшать.

Рис. 1. Принцип работы энкодера

Рассмотрим, как же устроен энкодер. На рисунке 1 показано устройство простого механического энкодера. Как видно из рисунка, основой энкодера является диск из изоляционного материалла закрепленный на оси, на которую и насаживается рукоятка для ее вращения. По периметру диска равномерно расположены специальные прорези. Прорези делят всю окружность на несколько (обысно 6-8) равных секторов. Причем ширина прорезей равна ширине промежутков между ними. Кроме того, имеется две группы контактов, которые установлены таким образом, что при вращении диска они то замыкаются попав в прорезь, то размыкаются в промежутке между прорезями. Очень важно расположение этих пар контактов относительно прорезей. Контакты расположены таким образом, что в тот момент, когда одна пара находится на краю какой либо прорези, вторая пара контактов находится ровно посредине между двумя соседними прорезями. Именно такое расположение и показано на рисунке. В результате реализуется следующий порядок замыкания/размыкания контактов:

Замыкается первая группа контактов

Замыкается вторая группа контактов

Размыкается первая группа контактов

Размыкается вторая группа контактов

5. Все повторяется сначала.

Рис. 2. Схема энкодера Рис. 3. Диаграмма работы

На рисунке 2 приведена внутренняя электрическая схема простого механического энкодера. Энкодер имеет всего три вывода (что делает его еще больше похожим на переменный резистор). Нижний по схеме вывод - общий для обеих пар контактов. В результате, при вращении рукоятки энкодера на выходе мы получим две последовательности импульсов. При равномерном вращении в одну сторону это будут два меандра, сдвинутых по фазе на 90 градусов. Для наглядности этот процесс показан на рисунке 3. Как микроконтроллер определяет угол поворота оси энкодера надеюсь понятно. Он просто подсчитывает число импульсов. Причем можно считать импульсы приходящие от любой из группы контактов. Основной фокус - как определить направления вращения. Как раз тут и помогает последовательность замыкания и размыкания контактов. При вращении оси энкодера в одну из сторон каждый раз, когда первая группа контактов переходит из замкнутого состояния в разомкнутое, вторая группа контактов оказывается замкнута. Причем момент перехода первой группы приходится как раз на середину отрезка времени, когда вторая группа замкнута. То есть, дребезг уже закончился и все переходные процессы улеглись. При вращении в другую сторону порядок размыканий и замыканий сменяется на обратный. Поэтому в момент, когда первая группа контактов переходит из замкнутого состояния в разомкнутое, вторая группа всегда оказывается разомкнута. Именно по этому факту микроконтроллер и определяет направление вращения.

Рис. 4. Схема подключения энкодера к микроконтроллеру

На рисунке 4 показана схема подключения энкодера к микроконтроллеру. Контакты энкодера подключаются таким же образом, как подключается простая отдельная кнопка (см. статью "Подключение кнопок"). Линии порта PD2 и PD3 должны быть настроены как входы и внутренний нагрузочный резистор на обоих входах должен быть включен. Подробнее о настройке линий порта и внутренних нагрузочных резисторах читайте в упомянутой выше статье "Подключение кнопок". Общий вывод энкодера, как видно из схемы, подключается к общему проводу всего устройства.

Программа обработки сигнала от энкодера предельно проста. Обратите внимание, что на схеме (рис. 4) для подключения энкодера выбраны линии PD2 и PD3. И это не случайно. В микроконтроллере ATtiny2313 альтернативной функцией этих выводов является функция входов внешнего прерывания INT0 и INT1. Для работы с энкодером как раз и используется одно из этиз прерываний. Например, можно использовать прерывание по внешнему входу INT0. То есть по входу PD2 (вывод 6). Из чего же состоит программа? Ну, во первых, сначала нужно разрешить прерывание по INT0. Причем необходимо выбрать такой режим, когда прерывание происходит по фрону (или спаду) импульса на этом входе. Ну а затем еще нужна простейшая подпрограммка обработки этого прерывания. Эта подпрограммка должна просто проверять значение линии порта PD3 и в зависимости от того, равно оно нули либо единице уменьшать либо увеличивать регулируемое значение.

Рассмотрим это подробнее. Допустим, что мы выбрали режим прерывания по фронту импульса. Представим, что контроллер выполняет основную программу, не связанную с энкодером. В какой то момент пользователь вращает рукоятку энкодера, например, влево. Контакты начинают замыкаться и размыкаться. По фронту импульса на входе INT0 в микроконтроллере происходит вызов прерывания. Это значит, что работа основной программы временно прерывается и контроллер переходит к подпрограмме обработки прерывания. Эта подпрограмма читает информацию из порта PD и оценивает содержимое разряда PD3. Так как рукоятка энкодера была повернута (мы договорились) вправо, то в этом разряде микроконтроллер обнаружит логическую единицу. Обнаружив единицу подпрограмма обработки прерывания увеличивает значение специальной ячейки, где хранится код, соответствующий текущей громкости. Код увеличивается на единицу. После этого подпрограмма заканчивает свою работу. Микроконтроллер снова переходит к выполнению своей основной программы. Если вращение в ту же сторону продолжается, то по фронту следующего импульса на INT0 опять будет вызвано прерывание и значение громкости снова увеличится на единицу. И так до тех пор, пока не прикратится вращение рукоятки энкодера либо не переполнится значение громкости. Подпрограмма должна проверять это значение и не увеличивать громкость, если она достигла максимума.

Если же ротор энкодера вращать в другую сторону, то та же процедура обработки прерывания, вызванная по фронту сигнала на входе NT0 обнаружит на входе PD3 значение логического нуля. Обнаружив этот ноль, подпрограмма должна уменьшить значение кода в ячейке громкости на единицу. Если вращение продолжается, то по фронту каждого импульса на входе INT0 будет вызываться это прерывание и каждый раз значение громкости будет уменьшаться. И в этом случае, программа должна контроллировать теперь уже минимальное значение громкости. И по достижении нуля, программа больше не должна производить процедуру вычитания.

До сих пор мы говорили о простом механическом энкодере. Но наличие механических контактов всегда связано с такими явлениями, как дребезг, а так же помехи, вызванные плохим контактом в связи с засорением или износом. Все это приводит к низкой надежности работы механического энкодера. Поэтому в последнее время получают все болшее распространение оптоэлектрические энкодеры. В оптоэлектрическом энкодере вместо механических контактов используются оптопары: светодиод-фотодиод. Такой энкодер требует дополнительного внешнего питания, поэтому он имеет еще один вывод - вывод питания. Питаются такие энкодеры обычно от стабилизированного источника +5В и выдают на выходе сигналы, близкие к стандартным логическим уровням. В связи с этим, отпадает необходимость включать внутренние резисторы нагрузки для тех входов микроконтроллера, к которым подключен такой энкодер. В остальном, работа с оптоэлектронными энкодерами аналогична работе с простыми механическими моделями. К сожалению, использование оптоэлектронных энкодеров ограничено их высокой стоимостью.

Последнее обновление (04.05.2008 г.)

Практические примеры применения USB-AVR

Проект USB-AVR пришелся по вкусу многим самодеятельным конструкторам из самых разных стран мира. Компания Objective development на своем сайте призывает всех, кто разработал свою собственную конструкция с использованием их технологии, присылать ее описание или ссылку на сайт с таким описанием и охотно размещает все эти ссылки на своем сайте.

ТО. что проекте участвуют представители разных стран, привело к тому, что разные описания приводятся на разных языках. В основном на английском, немецком, итальянском. К сожалению, пока ни одного проекта на русском. Однако наш сайт планирует перевести описания самых интересных проектов.