Сопротивление материалов виды изгибов. Поперечный изгиб

Гипотезу плоских сечений при изгибе можно объяснить на примере: нанесем на боковой поверхности недеформированной балки сетку, состоящую из продольных и поперечных (перпендикулярных к оси) прямых линий. В результате изгиба балки продольные линии примут криволинейное очертание, а поперечные практически останутся прямыми и перпендикулярными к изогнутой оси балки.

Формулировка гипотезы плоских сечения : поперечные сечения, плоские и перпендикулярные к оси балки до , остаются плоскими и перпендикулярными к изогнутой оси после ее деформации.

Это обстоятельство свидетельствует: при выполняется гипотеза плоских сечений , как при и

Помимо гипотезы плоских сечений принимается допущение : продольные волокна балки при ее изгибе не надавливают друг на друга.

Гипотезу плоских сечений и допущение называют гипотезой Бернулли .

Рассмотрим балку прямоугольного поперечного сечения, испытывающую чистый изгиб (). Выделим элемент балки длиной (рис. 7.8. а). В результате изгиба поперечные сечения балки повернутся, образовав угол . Верхние волокна испытывают сжатие, а нижние растяжение. Радиус кривизны нейтрального волокна обозначим .

Условно считаем, что волокна изменяют свою длину, оставаясь при этом прямыми (рис. 7.8. б). Тогда абсолютное и относительное удлинения волокна, отстоящего на расстоянии y от нейтрального волокна:

Покажем, что продольные волокна, не испытывающие при изгибе балки ни растяжения, ни сжатия, проходят через главную центральную ось x.

Поскольку длина балки при изгибе не изменяется, продольное усилие (N), возникающее в поперечном сечении, должно равняться нулю. Элементарное продольное усилие .

С учетом выражения :

Множитель можно вынести за знак интеграла (не зависит от переменной интегрирования).

Выражение представляет поперечного сечения балки относительно нейтральной оси x. Он равен нулю, когда нейтральная ось проходит через центр тяжести поперечного сечения. Следовательно, нейтральная ось (нулевая линия) при изгибе балки проходит через центр тяжести поперечного сечения.

Очевидно: изгибающий момент связан с нормальными напряжениями, возникающими в точках поперечного сечения стержня. Элементарный изгибающий момент, создаваемый элементарной силой :

,

где – осевой момент инерции поперечного сечения относительно нейтральной оси x, а отношение - кривизна оси балки.

Жесткость балки при изгибе (чем больше, тем меньше радиус кривизны ).

Полученная формула представляет собой закон Гука при изгибе для стержня : изгибающий момент, возникающий в поперечном сечении, пропорционален кривизне оси балки.

Выражая из формулы закона Гука для стержня при изгибе радиус кривизны () и подставляя его значение в формулу , получим формулу для нормальных напряжений () в произвольной точке поперечного сечения балки, отстоящей на расстоянии y от нейтральной оси x : .

В формулу для нормальных напряжений () в произвольной точке поперечного сечения балки следует подставлять абсолютные значения изгибающего момента () и расстояния от точки до нейтральной оси (координаты y). Будет ли напряжение в данной точке растягивающим или сжимающим легко установить по характеру деформации балки или по эпюре изгибающих моментов, ординаты которой откладываются со стороны сжатых волокон балки.

Из формулы видно: нормальные напряжения () изменяются по высоте поперечного сечения балки по линейному закону. На рис. 7.8, в показана эпюра . Наибольшие напряжения при изгибе балки возникают в точках, наиболее удаленных от нейтральной оси. Если в поперечном сечении балки провести линию, параллельную нейтральной оси x, то во всех ее точках возникают одинаковые нормальные напряжения.

Несложный анализ эпюры нормальных напряжений показывает, при изгибе балки материал, расположенный вблизи нейтральной оси, практически не работает. Поэтому в целях снижения веса балки рекомендуется выбирать такие формы поперечного сечения, у которых большая часть материала удалена от нейтральной оси, как, например, у двутаврового профиля.

Прямой поперечный изгиб возникает в случае, когда все нагрузки приложены перпендикулярно оси стержня, лежат в одной плоскости и, кроме того, плоскость их действия совпадает с одной из главных центральных осей инерции сечения. Прямой поперечный изгиб относится к простому виду сопротивления и является плоским напряженным состоянием , т.е. два главных напряжения отличны от нуля. При таком виде деформации возникают внутренние усилия: поперечная сила и изгибающий момент. Частным случаем прямого поперечного изгиба является чистый изгиб , при таком сопротивлении имеются грузовые участки, в пределах которых поперечное усилие обращается в ноль, а изгибающий момент отличен от нуля. В поперечных сечениях стержней при прямом поперечном изгибе возникают нормальные и касательные напряжения. Напряжения являются функцией от внутреннего усилия, в данном случае нормальные – функцией от изгибающего момента, а касательные - от поперечной силы. При прямом поперечном изгибе вводятся несколько гипотез:

1) Поперечные сечения балки, плоские до деформации, остаются плоскими и ортогональными к нейтральному слою после деформации (гипотеза плоских сечений или гипотеза Я. Бернулли). Эта гипотеза выполняется при чистом изгибе и нарушается при возникновении поперечной силы, касательных напряжений, и появлением угловой деформации.

2) Взаимное давление между продольными слоями отсутствует (гипотеза о ненадавливании волокон). Из этой гипотезы следует, что продольные волокна испытывают одноосное растяжение или сжатие, следовательно, при чистом изгибе справедлив закон Гука .

Стержень, испытывающий изгиб, называют балкой . При изгибе одна часть волокон растягивается, другая часть – сжимается. Слой волокон, находящийся между растянутыми и сжатыми волокнами, называют нейтральным слоем , он проходит через центр тяжести сечений. Линию пересечения его с поперечным сечением балки называют нейтральной осью . На основе введенных гипотез при чистом изгибе получена формула для определения нормальных напряжений, которая применяется и при прямом поперечном изгибе. Нормальное напряжение можно найти с помощью линейной зависимости (1), в которой отношение изгибающего момента к осевому моменту инерции (
) в конкретном сечении является величиной постоянной, а расстояние (y ) вдоль оси ординат от центра тяжести сечения до точки, в которой определяют напряжение, меняется от 0 до
.

. (1)

Для определения касательного напряжения при изгибе в 1856г. русским инженером – строителем мостов Д.И. Журавским была получена зависимость

. (2)

Касательное напряжение в конкретном сечении не зависит от отношения поперечной силы к осевому моменту инерции (
), т.к. эта величина в пределах одного сечения не меняется, а зависит от отношения статического момента площади отсеченной части к ширине сечения на уровне отсеченной части (
).

При прямом поперечном изгибе возникают перемещения: прогибы (v ) и углы поворотов (Θ ) . Для их определения используют уравнения метода начальных параметров (3), которые получены путем интегрирования дифференциального уравнения изогнутой оси балки (
).

Здесь v 0 , Θ 0 , М 0 , Q 0 – начальные параметры, x расстояние от начала координат до сечения, в котором определяется перемещение, a – расстояние от начала координат до места приложения или начала действия нагрузки.

Расчет на прочность и жесткость производят с помощью условий прочности и жесткости. С помощью этих условий можно решать поверочные задачи (выполнять проверку выполнения условия), определять размер поперечного сечения или подбирать допустимое значение параметра нагрузки. Условий прочности различают несколько, некоторые из них приведены ниже. Условие прочности по нормальным напряжениям имеет вид:

, (4)

здесь
момент сопротивления сечения относительно оси z, R – расчетное сопротивление по нормальным напряжениям.

Условие прочности по касательным напряжениям выглядит как:

, (5)

здесь обозначения те же, что и в формуле Журавского, а R s – расчетное сопротивление срезу или расчетное сопротивление по касательным напряжениям.

Условие прочности по третьей гипотезе прочности или гипотезе наибольших касательных напряжений можно записать в следующем виде:

. (6)

Условия жесткости можно записать для прогибов (v ) и углов поворота (Θ ) :

где значения перемещений в квадратных скобках являются допустимыми.

Пример выполнения индивидуального задания № 4 (срок 2-8 неделя)

Прямой изгиб – это вид деформации, при котором в поперечных сечениях стержня возникают два внутренних силовых фактора: изгибающий момент и поперечная сила.

Чистый изгиб – это частный случай прямого изгиба, при котором в поперечных сечениях стержня возникает только изгибающий момент, а поперечная сила равна нулю.

Пример чистого изгиба – участок CD на стержне AB . Изгибающий момент – это величина Pa пары внешних сил, вызывающая изгиб. Из равновесия части стержня слева от поперечного сечения mn следует, что внутренние усилия, распределенные по этому сечению, статически эквивалентны моменту M , равному и противоположно направленному изгибающему моменту Pa .

Чтобы найти распределение этих внутренних усилий по поперечному сечению, необходимо рассмотреть деформацию стержня.

В простейшем случае стержень имеет продольную плоскость симметрии и подвергается действию внешних изгибающих пар сил, находящихся в этой плоскости. Тогда изгиб будет происходить в той же плоскости.

Ось стержня nn 1 – это линия, проходящая через центры тяжести его поперечных сечений.

Пусть поперечное сечение стержня – прямоугольник. Нанесем на его грани две вертикальные линии mm и pp . При изгибе эти линии остаются прямолинейными и поворачиваются так, что остаются перпендикулярными продольным волокнам стержня.

Дальнейшая теория изгиба основана на допущении, что не только линии mm и pp , но все плоское поперечное сечение стержня остается после изгиба плоским и нормальным к продольным волокнам стержня. Следовательно, при изгибе поперечные сечения mm и pp поворачиваются относительно друг друга вокруг осей, перпендикулярных плоскости изгиба (плоскости чертежа). При этом продольные волокна на выпуклой стороне испытывают растяжение, а волокна на вогнутой стороне – сжатие.

Нейтральная поверхность – это поверхность, не испытывающая деформации при изгибе. (Сейчас она расположена перпендикулярно чертежу, деформированная ось стержня nn 1 принадлежит этой поверхности).

Нейтральная ось сечения – это пересечение нейтральной поверхности с любым с любым поперечным сечением (сейчас тоже расположена перпендикулярно чертежу).

Пусть произвольное волокно находится на расстоянии y от нейтральной поверхности. ρ – радиус кривизны изогнутой оси. Точка O – центр кривизны. Проведем линию n 1 s 1 параллельно mm . ss 1 – абсолютное удлинение волокна.

Относительное удлинение ε x волокна

Из этого следует, что деформации продольных волокон пропорциональны расстоянию y от нейтральной поверхности и обратно пропорциональны радиусу кривизны ρ .

Продольное удлинение волокон выпуклой стороны стержня сопровождается боковым сужением , а продольное укорочение вогнутой стороны – боковым расширением , как в случае простого растяжения и сжатия. Из-за этого вид всех поперечных сечений меняется, вертикальные стороны прямоугольника становятся наклонными. Деформация в боковом направлении z :



μ – коэффициент Пуассона.

Вследствие такого искажения все прямые линии поперечного сечения, параллельные оси z , искривляются так, чтоб остаться нормальными к боковым сторонам сечения. Радиус кривизны этой кривой R будет больше, чем ρ в таком же отношении, в каком ε x по абсолютной величине больше чем ε z , и мы получим

Этим деформациям продольных волокон отвечают напряжения

Напряжение в любом волокне пропорционально его расстоянию от нейтральной оси n 1 n 2 . Положение нейтральной оси и радиус кривизны ρ – две неизвестные в уравнении для σ x – можно определить из условия, что усилия, распределенные по любому поперечному сечению, образуют пару сил, которая уравновешивает внешний момент M .

Все вышесказанное также справедливо, если стержень не имеет продольную плоскость симметрии, в которой действует изгибающий момент, лишь бы только изгибающий момент действовал в осевой плоскости, которая заключает в себе одну из двух главных осей поперечного сечения. Эти плоскости называются главными плоскостями изгиба .

Когда имеется плоскость симметрии и изгибающий момент действует в этой плоскости, прогиб происходит именно в ней. Моменты внутренних усилий относительно оси z уравновешивают внешний момент M . Моменты усилий относительно оси y взаимно уничтожаются.

Мы начнем с простейшего случая, так называемого чистого изгиба.

Чистый изгиб есть частный случай изгиба, при котором в сечениях балки поперечная сила равна нулю. Чистый изгиб может иметь место только в том случае, когда собственный вес балки настолько мал, что его влиянием можно пренебречь. Для балок на двух опорах примеры нагрузок, вызывающих чистый

изгиб, представлены на рис. 88. На участках этих балок, где Q = 0 и, следовательно, М= const; имеет место чистый изгиб.

Усилия в любом сечении балки при чистом изгибе сводятся к паре сил, плоскость действия которой проходит через ось бал-ки, а момент постоянен.

Напряжения могут быть определены на основании следую-щих соображений.

1. Касательные составляющие усилий по элементарным пло-щадкам в поперечном сечении балки не могут быть приведены к паре сил, плоскость действия которой перпендикулярна к пло-скости сечения. Отсюда следует, что изгибающее усилие в сече-нии является результатом действия по элементарным площадкам

лишь нормальных усилий, а потому при чистом изгибе и напряжения сводятся только к нормальным.

2. Чтобы усилия по элементарным площадкам свелись только к паре сил, среди них должны быть как положительные, так и отрицательные. Поэтому должны существовать как растянутые, так и сжатые волокна балки.

3. Ввиду того, что усилия в различных сечениях одинаковы, то и напряжения в соответственных точках сечений одинаковы.

Рассмотрим какой-либо элемент вблизи поверхности (рис. 89, а). Так как по нижней его грани, совпадающей с по-верхностью балки, силы не приложены, то на ней нет и напря-жений. Поэтому и на верхней грани элемента нет напряжений, так как иначе элемент не находился бы и равновесии, Рассмат-ривая соседний с ним по высоте элемент (рис. 89,б), придем к

Такому же заключению и т. д. Отсюда следует, что по горизон-тальным граням любого элемента напряжения отсутствуют. Рас-сматривая элементы, входящие в состав горизонтального слоя, начиная с элемента у поверхности балки (рис. 90), придем к за-ключению, что и по боковым вертикальным граням любого эле-мента напряжения отсутствуют. Таким образом, напряженное состояние любого элемента (рис. 91,а), а в пределе и волокна, должно быть представлено так, как это показано на рис. 91,б, т. е. оно может быть либо осевым растяжением, либо осевым сжатием.

4. В силу симметрии приложения внешних сил сечение по середине длины балки после деформации должно остаться пло-ским и нормальным к оси балки (рис. 92, а). По этой же причине и сечения в четвертях длины балки тоже остаются плоскими и нормальными к оси балки (рис. 92,б), если только крайние се-чения балки при деформации остаются плоскими и нормальными к оси балки. Аналогичное заключение справедливо и для сечений в восьмых длины балки (рис. 92, в) и т. д. Следовательно, если при изгибе крайние сечения балки остаются плоскими, то и для любого сечения остается

справедли-вым утверждение, что оно после де-формации остается плоским и нор-мальным к оси изогнутой балки. Но в таком случае очевидно, что изменение удлинений волокон балки по ее высоте должно происходить не только непре-рывно, но и монотонно. Если назвать слоем совокупность волокон, имеющих одинаковые удлинения, то из сказан-ного следует, что растянутые и сжатые волокна балки должны располагаться по разные стороны от слоя, в котором удлинения волокон равны нулю. Бу-дем называть волокна, удлинения ко-торых равны нулю, нейтральными; слой, состоящий из нейтральных воло-кон, - нейтральным слоем; линию пе-ресечения нейтрального слоя с плоскостью поперечного сечения балки - нейтральной линией этого сечения. Тогда на основании предыдущих рассуждений можно утверждать, что при чистом изгибе балки в каждом ее сечении имеется нейтральная линия, которая делит это сечение на две части (зоны): зону растяну-тых волокон (растянутую зону) и зону сжатых волокон (сжа-тую зону). Соответственно с этим в точках растянутой зоны се-чения должны действовать нормальные растягивающие напря-жения, в точках сжатой зоны - сжимающие напряжения, а в точках нейтральной линии напряжения равны нулю.

Таким образом, при чистом изгибе балки постоянного се-чения:

1) в сечениях действуют только нормальные напряжения;

2) все сечение может быть разбито на две части (зоны) - растянутую и сжатую; границей зон является нейтральная линия сечения, в точках которой нормальные напряжения равны нулю;

3) любой продольный элемент балки (в пределе любое во-локно) подвергается осевому растяжению или сжатию, так что соседние волокна друг с другом не взаимодействуют;

4) если крайние сечения балки при деформации остаются плоскими и нормальными к оси, то и все ее поперечные сечения остаются плоскими и нормальными к оси изогнутой балки.

Напряженное состояние балки при чистом изгибе

Рас-смотрим элемент балки, подверженной чистому изгибу, заклю-ченный между сечениями m- m и n - n, которые отстоят одно от дру-гого на бесконечно малом расстоя-нии dx (рис. 93). Вследствие по-ложения (4) предыдущего пункта, сечения m- m и n - n, бывшие до деформации параллельными, после изгиба, оставаясь плоскими, будут составлять угол dQ и пересекаться по прямой, проходящей через точ-ку С, которая является центром кривизны нейтрального волокна NN. Тогда заключенная между ними часть АВ волокна, находящегося на расстоянии z от нейтрального во-локна (положительное направление оси z принимаем в сторону выпук-лости балки при изгибе), превра-тится после деформации в дугу А"В".Отрезок нейтрального волокна О1О2, превратившись в дугу О1О2 не изменит своей длины, тогда как волокно АВ получит удлинение:

до деформации

после деформации

где р - радиус кривизны нейтрального волокна.

Поэтому абсолютное удлинение отрезка АВ равно

и относительное удлинение

Так как согласно положению (3) волокно АВ подвергается осевому растяжению, то при упругой деформации

Отсюда видно, что нормальные напряжения по высоте балки распределяются по линейному закону (рис. 94). Так как равно-действующая всех усилий по всем элементарным площадкам се-чения должна равняться нулю, то

откуда, подставляя значение из (5.8), найдем

Но последний интеграл есть статический момент относительно оси Оу, перпендикулярной к плоскости действия изгибающих уси-лий.

Вследствие равен-ства его нулю эта ось должна проходить через центр тяжести О сечения. Тамим образом,нейтраль-ная линия сечения балки есть прямая уу, перпен-дикулярная к плоскости действия изгибающих усилий. Ее называют ней-тральной осью сечения балки. Тогда из (5.8) следует, что напряжения в точках, лежа-щих на одинаковом расстоянии от нейтральной оси, одинаковы.

Случай чистого изгиба, при котором изгибающие усилия действуют только в одной плоскости, вызывая изгиб только в этой плоскости, является плоским чистым изгибом. Если названная плоскость проходит через ось Oz, то момент элементарных уси-лий относительно этой оси должен быть равен нулю, т. е.

Подставляя сюда значение σ из (5.8), находим

Стоящий в левой части этого равенства интеграл, как изве-стно, является центробежным моментом инерции сеченияотноси-тельно осей у и z, так что

Оси, относительно которых центробежный момент инерции сечения равен нулю, называют главными осями инерции этого сечения. Если они, кроме того, проходят через центр тяжести сечения, то их можно назвать главными центральными осями инерции сечения. Таким образом, при плоском чистом изгибе направление плоскости действия изгибающих усилий и нейтраль-ная ось сечения являются главными центральными осями инер-ции последнего. Иными словами, для получения плоского чи-стого изгиба балки нагрузка к ней не может прикладываться произвольно: она должна сводиться к силам, действующим в плоскости, которая проходит через одну из главных центральных осей инерции сечений балки; при этом другая главная централь-ная ось инерции будет являться нейтральной осью сечения.

Как известно, в случае сечения, симметричного относительно какой-либо оси, ось симметрии является одной из главных цент-ральных осей инерции его. Следовательно, в этом частном случае мы заведомо получим чистый изгиб, приложив соответствующие анагрузки в плоскости, проходящей через продольную ось балки я ось симметрии ее сечения. Прямая, перпендикулярная к оси симметрии и проходящая через центр тяжести сечения, является при этом нейтральной осью этого сечения.

Установив положение нейтральной оси, нетрудно найти и ве-личину напряжения в любой точке сечения. В самом деле, так как сумма моментов элементарных усилий относительно нейт-ральной оси уу должна равняться изгибающему моменту, то

откуда, подставляя значение σ из (5.8), найдем

Так как интеграл является. моментом инерции сечения относительно оси уу, то

и из выражения (5.8) получим

Произведение ЕI У называют жесткостью балки при изгибе.

Наибольшее растягивающее и наибольшее по абсолютной величине сжимающее напряжения действуют в точках сечения, для которых абсолютная величина z наибольшая, т. е. в точках, наиболее удаленных от нейтральной оси. При обозначениях, рис. 95 имеем

Величину Jy/h1 называют моментом сопротивления сечения рас-тяжению и обозначают Wyр; аналогично, Jy/h2называют моментом сопротивления сечения сжатию

и обозначают Wyc,так что

и поэтому

Если нейтральная ось является, осью симметрии сечения, то h1 = h2 = h/2 и, следовательно, Wyp = Wyc, так что их различать нет надобности, и пользуются одним обозначением:

называя W y просто моментом сопротивления сечения.Следова-тельно, в случае сечения, симметричного относительно нейтраль-ной оси,

Все приведенные выше выводы получены на основании допу-щения, что поперечные сечения балки, при изгибе остаются пло-скими и нормальными к ее оси (гипотеза плоских сечений). Как было показано, это допущение справедливо только в том случае, когда крайние (концевые) сечения балки при изгибе остаются плоскими. С другой стороны, из гипотезы плоских сечений сле-дует, что элементарные усилия в таких сечениях должны распре-деляться по линейному закону. Поэтому для справедливости по-лученной теории плоского чистого изгиба необходимо, чтобы из-гибающие моменты на концах балки были приложены в виде элементарных сил, распределенных по высоте сечения по линей-ному закону (рис. 96), совпадающему с законом распределения напряжений по высоте сечения балки. Однако на основании принципа Сен-Венана можно утверждать, что изменение способа приложения изгибающих моментов на концах балки вызовет лишь местные деформации, влияние которых скажется лишь на некотором расстоянии от этих концов (приблизительно равном высоте сечения). Сечения же, находящиеся во всей остальной части длины балки, останутся плоскими. Следовательно, изложенная теория плоского чистого изгиба при любом способе приложения изгибающих моментов справедлива только в пределах средней части длины балки, находящейся от ее концов на расстояниях, при-близительно равных высоте сечения. Отсюда ясно, что эта тео-рия заведомо неприменима, если высота сечения превосходит половину длины или пролета балки.

Изгибом называется вид деформации, при котором искривляется продольная ось бруса. Прямые брусья, работающие на изгиб, называются балками. Прямым изгибом называется изгиб, при котором внешние силы, действующие на балку, лежат в одной плоскости (силовой плоскости), проходящей через продольную ось балки и главную центральную ось инерции поперечного сечения.

Изгиб называется чистым , если в любом поперечном сечении балки возникает только один изгибающий момент.

Изгиб, при котором в поперечном сечении балки одновременно действуют изгибающий момент и поперечная сила, называется поперечным . Линия пересечения силовой плоскости и плоскости поперечного сечения называется силовой линией .

Внутренние силовые факторы при изгибе балки.

При плоском поперечном изгибе в сечениях балки возникают два внутренних силовых фактора: поперечная сила Q и изгибающий момент М. Для их определения используют метод сечений (см. лекцию 1). Поперечная сила Q в сечении балки равна алгебраической сумме проекций на плоскость сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения.

Правило знаков для поперечных сил Q:

Изгибающий момент М в сечении балки равен алгебраической сумме моментов относительно центра тяжести этого сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения.

Правило знаков для изгибающих моментов M:

Дифференциальные зависимости Журавского.

Между интенсивностью q распределенной нагрузки, выражениями для поперечной силы Q и изгибающего момента М установлены дифференциальные зависимости:

На основе этих зависимостей можно выделить следующие общие закономерности эпюр поперечных сил Q и изгибающих моментов М:

Особенности эпюр внутренних силовых факторов при изгибе.

1. На участке балки, где нет распределенной нагрузки, эпюра Q представлена прямой линией , параллельной базе эпюре, а эпюра М - наклонной прямой (рис. а).

2. В сечении, где приложена сосредоточенная сила, на эпюре Q должен быть скачок , равный значению этой силы, а на эпюре М -точка перелома (рис. а).

3. В сечении, где приложен сосредоточенный момент, значение Q не изменяется, а эпюра М имеет скачок , равный значению этого момента, (рис. 26, б).

4. На участке балки с распределенной нагрузкой интенсивности q эпюра Q изменяется по линейному закону, а эпюра М - по параболическому, причем выпуклость параболы направлена навстречу направлению распределенной нагрузки (рис. в, г).

5. Если в пределах характерного участка эпюра Q пересекает базу эпюры, то в сечении, где Q = 0, изгибающий момент имеет экстремальное значение M max или M min (рис. г).

Нормальные напряжения при изгибе.

Определяются по формуле:

Моментом сопротивления сечения изгибу называется величина:

Опасным сечением при изгибе называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение.

Касательные напряжения при прямом изгибе.

Определяются по формуле Журавского для касательных напряжений при прямом изгибе балки:

где S отс - статический момент поперечной площади отсеченного слоя продольных волокон относительно нейтральной линии.

Расчеты на прочность при изгибе.

1. При проверочном расчете определяется максимальное расчетное напряжение, которое сравнивается с допускаемым напряжением:

2. При проектном расчете подбор сечения бруса производится из условия:

3. При определении допускаемой нагрузки допускаемый изгибающий момент определяется из условия:

Перемещения при изгибе.

Под действием нагрузки при изгибе ось балки искривляется. При этом наблюдается растяжение волокон на выпуклой и сжатие - на вогнутой частях балки. Кроме того, происходит вертикальное перемещение центров тяжести поперечных сечений и их поворот относительно нейтральной оси. Для характеристики деформации при изгибе используют следующие понятия:

Прогиб балки Y - перемещение центра тяжести поперечного сечения балки в направлении, перпендикулярном к ее оси.

Прогиб считают положительным, если перемещение центра тяжести происходит вверх. Величина прогиба меняется по длине балки, т.е. y = y (z)

Угол поворота сечения - угол θ, на который каждое сечение поворачивается по отношению к своему первоначальному положению. Угол поворота считают положительным при повороте сечения против хода часовой стрелки. Величина угла поворота меняется по длине балки, являясь функцией θ = θ (z).

Самыми распространёнными способами определения перемещений является метод Мора и правило Верещагина .

Метод Мора.

Порядок определения перемещений по методу Мора:

1. Строится «вспомогательная система» и нагружается единичной нагрузкой в точке, где требуется определить перемещение. Если определяется линейное перемещение, то в его направлении прикладывается единичная сила, при определении угловых перемещений – единичный момент.

2. Для каждого участка системы записываются выражения изгибающих моментов М f от приложенной нагрузки и М 1 - от единичной нагрузки.

3. По всем участкам системы вычисляют и суммируют интегралы Мора, получая в результате искомое перемещение:

4. Если вычисленное перемещение имеет положительный знак, то это значит, что его направление совпадает с направлением единичной силы. Отрицательный знак указывает на то, что действительное перемещение противоположно направлению единичной силы.

Правило Верещагина.

Для случая, когда эпюра изгибающих моментов от заданной нагрузки имеет произвольное, а от единичной нагрузки – прямолинейное очертание, удобно использовать графоаналитический способ, или правило Верещагина.

где A f – площадь эпюры изгибающего момента М f от заданной нагрузки; y c – ордината эпюры от единичной нагрузки под центром тяжести эпюры М f ; EI x – жесткость сечения участка балки. Вычисления по этой формуле производятся по участкам, на каждом из которых прямолинейная эпюра должна быть без переломов. Величина (A f *y c) считается положительной, если обе эпюры располагаются по одну сторону от балки, отрицательной, если они располагаются по разные стороны. Положительный результат перемножения эпюр означает, что направление перемещения совпадает с направлением единичной силы (или момента). Сложная эпюра М f должна быть разбита на простые фигуры(применяется так называемое "расслоение эпюры"), для каждой из которых легко определить ординату центра тяжести. При этом площадь каждой фигуры умножается на ординату под ее центром тяжести.