Уравнение выражает первое начало термодинамики. Первое начало термодинамики -объяснение этого закона и практические примеры

Первое начало термодинамики

План

    Внутренняя энергия.

    Изопроцессы.

    Работы при изопроцессах.

    Адиабатический процесс.

    Теплоемкость.

    Внутренняя энергия тела.

Внутренняя энергия тела слагается из кинетической энергии поступательного и вращательного движения молекул, кинетической и потенциальной энергии колебательного движения атомов в молекулах, потенциальной энергии взаимодействия между молекулами и внутримолекулярной энергии (внутриядерной).

Кинетическая и потенциальная энергия тела как целого не входит во внутреннюю энергию.

Внутренняя энергия термодинамической системы тел слагается из внутренней энергии взаимодействия между телами и внутренней энергии каждого тела.

Работа термодинамической системы над внешними телами заключается в изменении состояния этих тел и определяется количеством энергии, которую термодинамическая система передает внешним телам.

Теплота - это количество энергии, представляемое системой внешним телам при теплообмене. Работа и теплота не являются функциями состояния системы, а функцией перехода из одного состояния в другое.

Термодинамической системой – называют такую систему, совокупность макроскопических тел, которые могут обмениваться энергией между собой и с внешней средой (с другими телами) (Например, жидкость и находящийся над ней пар). Термодинамическая система характеризуется параметрами:

P , V , T , ρ и т.д.

Состояния системы, когда хотя бы один из параметров изменяется, называется неравновесными.

Термодинамические системы, которые не обмениваются с внешними телами энергией, называются замкнутыми.

Термодинамический процесс – переход системы из одного состояния (P 1 , V 1 , T 1 ) в другое (P 2 , V 2 , T 2 ) – нарушение равновесия в системе.

    Первое начало термодинамики.

Количество теплоты, сообщенное системе, идет на приращение внутренней энергии системы и на совершение системой работы над внешними телами.

Первый закон термодинамики - это специальный случай закона сохранения энергии, учитывающий внутреннюю энергию системы:

Q = U 2 - U 1 + A ;

U 1, U 2 - начальное и конечное значения внутренней энергии тела.

A - работа, совершаемая системой.

Q - Количество теплоты, сообщаемое системе.

В дифференциальном виде:

d Q = dU + d A ;

dU - есть полный дифференциал, и он зависит от разности начального и конечного состояния системы.

d Q и d A – неполные дифференциалы, зависят от самого процесса, то есть от пути совершения процесса. Работа совершается тогда, когда изменяется объем:

d A = Fdx = pSdx = pdV ;

d A = pdV ;

Первое начало термодинамики - невозможен вечный двигатель первого рода, то есть двигатель, который совершал бы работу в большем количестве, чем получаемая им извне энергия.

- не зависит от пути интегрирования.

- зависит от пути интегрирования функции процесса и нельзя записать:

A 2 - A 1 ; Q 2 - Q 1 ;

A , Q - не являются функциями состояния. Нельзя говорить о законе работы и теплоты.

Это и есть не что иное, как закон сохранения энергии.

    Изопроцессы.

1) Изохорический процесс:

V= с onst ;

Процесс при нагревании газа в замкнутом объеме.

d Q=dU+pdV,

pdV=0; d U=dU,

Первое начало термодинамики приобретает такой вид.

Теплоемкость при V - const :

Теплоемкость определяется отношение приращения полученного системой тепла к приращению температуры.

2) Изобарический процесс:

P = const ;

d Q = dU + d A ;

Разделим на dT (для 1 моля газа):

pV=RT,

Cp = Cv + R ,

3) Изотермический процесс:

T = const ,

P V = A ;

Поскольку внутренняя энергия зависит от T , то при изотермическом расширении dU =0:

d Q = d A ,

Подводимые к газу при изотермическом расширении тепло целиком превращается в работу расширения.

dQ стремится к ∞, dT стремится к 0.

4) Адиабатический процесс:

Без теплообмена с окружающей средой. Первое начало термодинамики приобретает вид:

d Q=0; dU+d A=0,

dU+d A=0; d A=-dU,

При адиабатическом процессе работа совершается только за счет убыли внутренней энергии газа.

Процессы, в которых d Q =0 - адиабатические. Адиабатические процессы всегда сопровождаются изменением температуры тела. Так как при адиабатическом расширении работа, совершается за счет внутренней энергии (1кал= 4,19 Дж).

    Работа при изопроцессах.

1) Изохорический процесс:

V = const

d A = pdV =0; A v =0,

Работа сил давления при равновесном процессе численно равна площади под кривой, изображающей процесс на PV - диаграмме:

d A = pdV .

2) Изобарический процесс:

p=const;

d A=pdV;

3) Изотермический процесс:

T = const ;

d A = pdV ;

dV= RT;

;

Равновесие процесса:

4) Адиабатический процесс:

d Q = dU + pdV ;

dU=-pdV,

d Q=0; dU=C v dT,

,

Интегрируем:

+ (γ-1)·lnV= const,

(TV γ-1 )= const,

(TV γ-1 ) = const – уравнение Пуассона

;

Р V γ = const .

6. Теплоемкость.

1) Теплоемкостью тела называют количество теплоты, которое надо сообщить телу, чтобы оно нагрелось на 1 0 С.

C p = C V + R ; C P > C V,

Теплоемкость можно отнести к единице массы, одному молю и единице объема. Соответственно: удельная, молярная, объемная ([Дж/кг*град]; [Дж/мол*град]; [Дж/м 3* град]).

2)Теплоемкость в реальных газах:

Внутренняя энергия моля:

N a k = R ,

– теплоемкость одного моля при неизменном объеме (v = const ).

;

теплоемкость одного моля при неизменном давление (p = const ).

Удельная теплоемкость.

[ ] ;

Функция состояния.

W = U + PV ; C p > C v

При нагревании с сохранением Р часть Q идет на расширение. Только расширяясь можно сохранять Р.

Изотерма: PV = const ;

Адиабата: PV γ = const ;

PV γ

Поскольку γ>1, то кривая адиабаты идет круче изотермы.

;

C v dT + pdV=0;

d A=pdV= - C v dT;

PV γ =P 1 V 1 γ ,


Существует две формы передачи энергии от одних тел к другим — это совершение работы одних тел над другими и передача теплоты. Энергия механического движения может переходить в энергию теплового движения и наоборот. В таких переходах энергии выполняется закон сохранения энергии. В применении к процессам, рассматриваемым в термодинамике, закон сохранения энергии именуется первым законом (или первым началом) термодинамики. Этот закон является обобщением эмпирических данных.

Формулировка первого закона термодинамики

Первый закон термодинамики формулируют следующим образом:

Количество теплоты, которое подводится к системе, расходуется на совершение данной системой работы (против внешних сил) и изменение ее внутренней энергии. В математическом виде первый закон термодинамики можно записать в интегральном виде:

где - количество теплоты, которое получает термодинамическая система; - изменение внутренней энергии рассматриваемой системы; A - работа, которую выполняет система над внешними телами (против внешних сил).

В дифференциальном виде первый закон термодинамики записывают как:

где - элемент количества теплоты, который получает система; - бесконечно малая работа, которую выполняет термодинамическая система; - элементарное изменение внутренней энергии, рассматриваемой системы. Следует обратить внимание на то, что в формуле (2) - элементарное изменение внутренней энергии является полным дифференциалом, в отличие от и .

Количество теплоты считают положительным, если система тепло получает и отрицательным, если тепло отводится от термодинамической системы. Работа будет больше нуля, если ее совершает система, и работа будет считаться отрицательной, если она совершается над системой внешними силами.

В то случае, если система вернулась в первоначальное состояние, то изменение ее внутренней энергии будет равно нулю:

В таком случае в соответствии с первым законом термодинамики мы имеем:

Выражение (4) означает, что невозможен вечный двигатель первого рода. То есть, принципиально нельзя создать периодически действующую систему (тепловой двигатель), совершающую работу, которая была бы больше, чем количество теплоты, полученное системой извне. Положение о невозможности вечного двигателя первого рода, также является одним из вариантов формулировки первого закона термодинамики.

Примеры решения задач

ПРИМЕР 1

Задание Какое количество теплоты (), передано идеальному газу, имеющему объем V в процессе изохорного нагрева, если его давление изменяется на величину ? Считайте, что число степеней свободы молекула газа равно i.
Решение Основой для решения задачи является первый закон термодинамики, который мы будем использовать в интегральном виде:

Так как по условию задачи процесс с газом проводят изохорный (), то работа в данном процессе равна нулю, тогда первое начало термодинамики для изохорного процесса получит вид:

Изменение внутренней энергии определяют при помощи формулы:

где i - число степеней свободы молекулы газа; - количество вещества; R - универсальная газовая постоянная. Так как нам не известно, как изменяется температура газа в рассматриваемом процессе, то используем уравнение Менделеева - Клапейрона для того, чтобы найти :

Выразим из (1.4) температуру, запишем формулы для двух состояний рассматриваемой системы:

Используя выражения (1.5) найдем :

Из выражений (1.3) и (1.6) следует, что для изохорного процесса изменение внутренней энергии можно найти как:

А из первого начала термодинамики для нашего процесса (при ), имеем, что:

Ответ

ПРИМЕР 2

Задание Найдите изменение внутренней энергии кислорода (), работу совершенную им (A) и полученное количество теплоты () в процессе (1-2-3), который указан на графике (рис.1). Считайте, что м 3 ; 100 кПа; м 3 ; кПа.

Решение Изменение внутренней энергии не зависит от хода процесса, так как внутренняя энергия является функцией состояния. Она зависит только от конечного и начального состояний системы. Поэтому можно записать, что изменение внутренней энергии в процессе 1-2-3, равно:

где i - число степеней свободы молекулы кислорода (так как молекула состоит из двух атомов, то считаем ), - количество вещества, . Разность температур можно найти, если использовать уравнение состояния идеального газа и посмотреть на график процессов:

Такие физические процессы, как теплота и работа, можно объяснить простой передачи энергии от одного тела к другому. В случае с работой речь идет о механической энергии, теплота же предполагает энергию термическую. Передача энергии ведется по законам термодинамики. Главные положения этого раздела физики известны как «начала».

Первое начало термодинамики регулирует и ограничивает процесс передачи энергии в той или иной системе.

Виды энергетических систем

В физическом мире существует два типа энергетических систем. Замкнутая, или закрытая система имеет постоянную массу. В открытой, или незамкнутой системе масса может уменьшаться и увеличиваться в зависимости от процессов, протекающих в этой системе. Большинство наблюдаемых систем являются незамкнутыми.

Исследования в таких системах затруднено множеством случайных факторов, влияющих на достоверность результатов. Поэтому физики изучают явления в замкнутых системах, экстраполируя результаты на открытые, с учетом необходимых поправок.

Энергия изолированной системы

Любая замкнутая система, в которой отсутствует обмен энергией с окружающей средой, является изолированной. Равновесное состояние такой системы определяется показаниями таких величин:

  • P- давление в системе;
  • V - объем изолированной системы
  • T- температура;
  • n - число молей газа в системе;

как видно, количество тепла и выполненная работа не входят в этот перечень. Закрытая изолированная система не совершает теплообмен и не производит работу. Ее полная энергия остается неизменной.

Изменение энергии системы

При совершении работы или возникновении процесса теплообмена состояние системы изменяется, и изолированной она уже считаться не будет.

Формулировка первого начала термодинамики

Прежде всего первое начало термодинамики было выведено для изолированных систем. Позднее было доказано, что закон универсален, и его можно применять к незамкнутым системам, если правильно учитывать изменение внутренней энергии, происходящее из-за колебания количества вещества в системе. Если рассматриваемая система переходит из состояния А в состояние Б, то работа, совершенная системой W , и количество теплоты Q будут различаться. Различные процессы дают неодинаковые показания этих переменных даже в случае, если в конечном итоге система придет в первоначальное состояние. Но при этом разница W - Q будет всегда одна и та же. Иными словами, если после какого-либо воздействия система пришла в первоначальное состояние, то независимо от типа процессов, учувствовавших в преобразовании такой системы, соблюдается правило W - Q = const .

В некоторых случаях удобнее использовать дифференциальную формулу выражения первого закона. Он выглядит так:dU=dW-dQ

здесь dU - бесконечно малое изменение внутренней энергии

dW - величина, характеризующая бесконечно малую работу системы

dQ - бесконечно малое количество теплоты, переданное данной системе.

Энтальпия

Для более широкого применения первого закона термодинамики вводится понятие энтальпии.

Так называется общее количество полной энергии вещества и произведения объема и давления. Физическое выражение энтальпии можно представить такой формулой:

Абсолютное значение энтальпии представляет собой сумму энтальпий всех частей, из которых состоит система.


В количественном выражении эта величина не может быть определена. Физики оперируют лишь разностью энтальпий конечного и начального состояния системы. Ведь при любых расчетах изменения состояния системы выбирают определенный уровень, при котором потенциальная энергия равна нулю. Точно также поступают и при расчете энтальпии. Если применить понятие энтальпии, то первое начало термодинамики для изопроцессов будет выглядеть таким образом:dU=dW-dH

Энтальпия любой системы зависит от внутреннего строения веществ, которые составляют эту систему. Эти показатели, в свою очередь, зависят от строения вещества, его температуры, количества и давления. Для сложных веществ можно вычислить стандартную энтальпию образования, которая равна тому количеству теплоты, которое понадобится для образования моля вещества из простых составляющих. Как правило, величина стандартной энтальпии отрицательная, так как при синтезе сложных веществ в большинстве случаев выделяется теплота.

Первый закон термодинамики в адиабатических процессах

Применение первого начала термодинамики для изопроцессов можно рассмотреть графически. К примеру, рассмотрим адиабатический процесс, в котором количество теплоты в течение всего времени остается неизменным, то есть Q = const . Такой изопроцесс протекает в теплоизолированных системах, или за столь короткое время, что система не успевает совершить теплообмен с внешней средой. Медленное расширение газа на диаграмме "объем-давление" описывается такой кривой:

По графику можно обосновать применение первого начала термодинамики к изопроцессам. Поскольку изменения количества теплоты в адиабатическом процессе не происходит, изменение внутренней энергии равно количеству произведенной работы. dU = - dW

Отсюда следует, что внутренняя энергия системы убывает, и температура ее падает.

Примеры адиабатических процессов

Верно и обратное утверждение: понижение давления при отсутствии теплообмена резко повышает температуру системы. Приблизительно так расширяется газ в двигателях внутреннего сгорания. В двигателях Дизеля горючий газ сжимается в 15 раз. Кратковременное повышение температуры позволяет горючей смеси самостоятельно воспламениться.

Можно рассмотреть еще один пример адиабатического процесса - свободное расширение газов. Для этого рассмотрим такую установку, состоящую из двух емкостей:

В первой емкости имеется газ, во второй он отсутствует. Поворачивая кран, мы добьемся того, что газ заполнит весь отведенный ему объем. При достаточной изолированности системы температура газа останется неизменной. Поскольку газ не выполнял никакой работы, переменная dW = const . Выяснилось, что при прочих равных условиях температура газа при расширении понижается. Расширение газа происходит неравномерно, поэтому на диаграмме "давление-объем" этот процесс представлен быть не может.

Первое начало термодинамики является универсальным законом, применяющимся во всех обозримых процессах Вселенной. Глубокое понимание причин тех или иных превращений энергии позволяет понимать существующие физические явления и открывать новые законы.

Основные законы, которые являются основой термодинамики, называют началами. В основании термодинамики лежат три начала. Первое начало термодинамики является законом сохранения энергии для термодинамических процессов. В интегральном виде формула первого начала термодинамики выглядит как:

что означает: количество теплоты, подводимое к термодинамической системе, идет на совершение данной системой работы и изменение ее внутренней энергии. Условлено считать, что если теплота к системе подводится, то она больше нуля ( title="Rendered by QuickLaTeX.com" height="17" width="65" style="vertical-align: -4px;">) и если работу выполняет сама термодинамическая система, то она положительна ( title="Rendered by QuickLaTeX.com" height="12" width="48" style="vertical-align: 0px;">).

Первое начало термодинамики можно представить в дифференциальном виде, тогда формула для него будет:

где - бесконечно малое количество теплоты, подводимое к системе; - элементарная работа системы; - малое изменение внутренней энергии системы.

Если исследуемой термодинамической системой является идеальный газ, то работа выполняемая им связана с изменением объема (), в таком случае формулой первого начала термодинамики (в дифференциальном виде) можно считать выражение:

Следует напомнить, что первое начало термодинамики не указывает направление, в котором происходит термодинамический процесс. Формула первого начала отображает только изменение параметров системы, если процесс происходит. В термодинамике за указание на направление процесса отвечает второе начало.

Формулы первого начала термодинамики для процессов

Для процесса, происходящего в некоторой массе газа при постоянной температуре (изотермический процесс), формула первого начала термодинамики преобразуется к виду:

Из выражения (4) следует, что вся теплота, которую получает термодинамическая система, расходуется на совершение этой системой работы.

Формулой первого начала термодинамики для изохорного процесса служит выражение:

При изохорном процессе, все тепло, полученное системой, идет на увеличение ее внутренней энергии.

В изобарном процессе формула первого закона термодинамики остается без изменения (3).

Адиабатный процесс отличается тем, что он происходит без обмена теплотой с окружающей средой. В формуле для первого начала термодинамики это отражается так:

В адиабатическом процессе газ совершает работу за счет своей внутренней энергии.

Примеры решения задач по теме «Первый закон термодинамики»

ПРИМЕР 1

Задание На рис.1 изображены изотермы AB и CD. Найдите отношение количества теплоты (), которое получает одна и та же масса газа в процессах I и II. Считайте массу газа в процессах неизменной.

Решение Процесс I является изохорным. Для изохорного процесса первое начало термодинамики запишем как:

Процесс II - является изобарным, для него первое начало термодинамики принимает вид:

где использовано уравнение состояния идеального газа для изобарного процесса и рассмотрены начальное и конечное состояния газа:

Найдем искомое отношение:

Ответ =

ПРИМЕР 2

Задание Какое количество теплоты сообщили одноатомному идеальному газу в количестве моль, если провели с ним изобарное нагревание? Температура изменилась на K.
Решение Основой для решения задачи является первое начало термодинамики, которое для изобарного процесса запишем как:

Для изобарного процесса работа газа равна:


    Основные термодинамические понятия: внутренняя энергия, работа, теплота. Уравнение первого начала термодинамики.

  1. Применение первого начала термодинамики к изопроцессам идеального газа. Зависимость теплоёмкости идеального газа от вида процесса. Формула Майера.

  2. Работа, совершаемая газом при изопроцессах.

  3. Адиабатический процесс. Политропические процессы.

  1. Основные термодинамические понятия
Термодинамика в отличие от молекулярно-кинетической теории не вдаётся в рассмотрение микроскопической картины явлений (оперирует с макропараметрами). Термодинамика рассматривает явления, опираясь на основные законы (начала), которые являются обобщением огромного количества опытных данных .

Внутренняя энергия – энергия физической системы, зависящая от её внутреннего состояния . Внутренняя энергия включает энергию хаотического (теплового) движения всех микрочастиц системы (молекул, атомов, ионов и т.д.) и энергию взаимодействия этих частиц . Кинетическая энергия движения системы как целого и её потенциальная энергия во внешних силовых полях во внутреннюю энергию не входит. В термодинамике и её приложениях представляет интерес не само значение внутренней энергии, а её изменение при изменении состояния системы. Внутренняя энергия – функция состояния системы.

Работа термодинамической системы над внешними телами заключается в изменении состояния этих тел и определяется количеством энергии, передаваемой системой внешним телам при изменении объема.

Сила, создаваемая давлением газа на поршень площади равна
. Работа, совершаемая при перемещении поршня
, равна
, где
изменение объёма газа (рис. 14.1), то есть





Теплота (количество теплоты) – количество энергии, получаемой или отдаваемой системой при теплообмене . Элементарное количество теплоты
не является в общем случае дифференциалом какой-либо функции параметров состояния. Передаваемое системе количество теплоты, как и работа, зависит от того, каким способом система переходит из начального состояния в конечное. (В отличие от внутренней энергии, для которой
, но
, нельзя сказать, сколько работы содержит тело, “это функция” процесса – динамическая характеристика).

1-ый закон (начало) термодинамики: количество теплоты, сообщённое системе, идёт на приращение внутренней энергии системы и на совершение системой работы над внешними телами .





где
количество сообщённой телу теплоты;

и
начальное и конечное значения внутренней энергии;

работа, совершённая системой над внешними телами.

В дифференциальной форме 1-ое начало:







сообщённое телу элементарное количество теплоты;

изменение внутренней энергии;

совершённая телом работа (например, работа, совершённая при расширении газа).


  1. Применение 1-го начала термодинамики к изопроцессам идеального газа
(Изопроцессы от
(греч.) – равный). Процессы, происходящие при каком-то постоянном параметре (
изотермический;
изобарический;
изохорический).

Теплоёмкостью тела называется величина, равная отношению сообщённого телу количества теплоты
к соответствующему приращению температуры
.





Размерность теплоёмкости тела
.

Аналогичные определения вводятся для 1 моля (молярная теплоёмкость

), и для единицы массы вещества
.


  1. Рассмотрим нагревание газа при постоянном объёме. По первому закону термодинамики:
, т.к.
, то
.

по определению, а для процесса с :

, где

теплоёмкость газа при постоянном объёме.

Тогда
и






  1. Теплоёмкость газа при постоянном давлении :

.

Для идеального газа для 1 моля (из уравнения Менделеева-Клапейрона).

.

Продифференцируем это выражения по температуре Т, получим:

, получим для 1 моля





Но выражение называется уравнением Майера . Оно показывает, что
всегда больше
на величину молярной газовой постоянной. Это объясняется тем, что при нагревании газа при постоянном давлении по сравнению с процессом при постоянном объёме, требуется ещё дополнительное количество теплоты на совершение работы расширения газа, т.к. постоянство давления обеспечивается увеличением объёма газа.

  1. При адиабатическом процессе (процесс протекающий без теплообмена с внешней средой).

,
, т.е. теплоёмкость в адиабатическом процессе равна нулю.


Существуют процессы, при которых газ, расширяясь, совершает работу большую, чем полученная теплота, тогда его температура понижается , несмотря на приток теплоты. Теплоёмкость в этом случае отрицательна . В общем случае
.

3. Работа, совершаемая газом при изопроцессах

Изобарный
.





Диаграмма этого процесса (изобары) в координатах
изображается прямой, параллельной оси (рис. 14.2). При изобарном процессе работа газа при расширении объёма от до равна:






Рис. 14.2

И определяется площадью заштрихованного прямоугольника на рис. 14.2.

Изохорный процесс (). Диаграмма этого процесса




(изохора ) в координатах изображается прямой, параллельной оси ординат (рис. 14.3). поскольку , то
.

Изотермический процесс (). (рис. 14.4). Воспользовавшись уравнением состояния идеального газа Менделеева- Клайперона для работы в изотермическом процессе получаем:


Рис. 14.3




Изотермический процесс является идеальным процессом , т.к. расширение газа при постоянной температуре может происходить только бесконечно медленно . При конечной скорости расширения возникнут градиенты температуры.
4. Адиабатический (адиабатный) процесс

Это процесс, происходящий без теплообмена с окружающими телами . Рассмотрим, при каких условиях можно реально осуществить адиабатический процесс, или приблизиться к нему.

1. Необходима адиабатическая оболочка , теплопроводность которой равна нулю. Приближением к такой оболочке может служить сосуд Дьюара .

2. 2-ой случай – процессы, протекающие очень быстро . Теплота не успевает распространиться и в течение некоторого времени можно полагать .

3. Процессы, протекающие в очень больших объёмах газа , например, в атмосфере (области циклонов, антициклонов). Для выравнивания температуры передача теплоты должна происходить из соседних, более нагретых слоёв воздуха, на это часто требуется значительное время.

Для адиабатического процесса первый закон термодинамики :

или
.

В случае расширения газа
,
, (температура понизится). Если произошло сжатие газа
, то
(температура повышается). Выведем уравнение, связывающее параметры газа при адиабатическом процессе. Учтём, что для идеального газа
, тогда

Разделим обе части уравнения на
:

.

Из уравнения Майера
, тогда

.

Обозначим
.

.

Проинтегрируем это уравнение:






Отсюда

Получили уравнение Пуассона (для адиабаты) (1 – ая форма). Заменим
:

,

2 – ая форма уравнения Пуассона . На рис. 14.5 представлены сравнительные графики изотермы и адиабаты.


Рис. 14.5

Так как
, то график адиабаты более крутой по сравнению с изотермой. Вычислим работу при адиабатическом процессе :

т.е

Политропические процессы .

Так называют процессы, уравнение которых в переменных
имеет вид

где n-произвольное число, как положительное, так и отрицательное, а также равное нулю. Соответствующую кривую называют политропой. Политропическими являются, в частности, процессы адиабатический, изотермический, изобарический, изохорический.


Вопросы для самоконтроля

Лекция №15

Второе начало термодинамики
План


  1. Обратимые и необратимые процессы. Круговой процесс (цикл). Равновесные состояния и процессы.

  2. . Максимальный КПД теплового движения.

  3. Тепловые двигатели и холодильные машины.

  4. Энтропия. Закон возрастания энтропии.

  5. Статистический вес (термодинамическая вероятность). Второе начало термодинамики и его статистическое толкование.

1. Обратимые и необратимые процессы

Пусть в результате некоторого процесса в изолированной системе тело переходит из состояния А в состояние В и затем возвращается в начальное состояние А . Процесс называется обратимым , если возможно осуществить обратный переход из В в А через те же промежуточные состояния, что и в прямом процессе , чтобы не осталось никаких изменений и в самом теле и в окружающих телах. Если же обратный процесс невозможен , или по окончании процесса в окружающих телах и в самом теле остались какие-либо изменения, то процесс является необратимым .

Примеры необратимых процессов . Любой процесс сопровождаемый трением является необратимым (теплота, выделяющаяся при трении не может без затраты работы другого тела собраться и вновь превратиться в работу). Все процессы, сопровождаемые теплопередачей от нагретого тела к менее нагретому, является необратимыми (например, теплопроводность). К необратимым процессам также относятся диффузия, вязкое течение. Все необратимые процессы являются неравновесными .

Равновесные – это такие процессы, которые представляют из себя последовательность равновесных состояний . Равновесное состояние – это такое состояние, в котором без внешних воздействий тело может находиться сколь угодно долго. (Строго говоря, равновесный процесс может быть только бесконечно медленным . Любые реальные процессы в природе протекают с конечной скоростью и сопровождаются рассеянием энергии. Обратимые процессы – идеализация , когда необратимыми процессами можно пренебречь).

Круговой процесс (цикл). Если тело из состояния А в состояние В переходит через одни промежуточные состояния, а возвращается в начальное состояние А через другие промежуточные состояния, то совершается круговой процесс , или цикл .

Круговой процесс является обратимым , если все его части обратимы . Если какая-либо часть цикла необратима, то и весь процесс необратим.



2. Цикл Карно и его КПД для идеального газа

(Сади Карно (1796 – 1832) – французский физик).





Цикл Карно заключается в следующем . Сначала система, имея температуру , приводится в тепловой контакт с нагревателем . Затем, бесконечно медленно уменьшая внешнее давление, её заставляют расширяться по изотерме 1-2 . При этом она получает тепло от нагревателя и производит работу
против внешнего давления .
Рабочий цикл состоит из двух равновесных изотерм и двух равновесных адиабат (рис. 15.2). В машине, как допускают, отсутствуют потери на трение, теплопроводность и т.д. С машиной связаны два резервуара теплоты. Один, имеющий температуру , называется нагревателем , другой имеющий более низкую температуру холодильником (или теплоприёмником ). Резервуары настолько велики, что отдача или получение теплоты не изменяет их температуру.

После этого систему адиабатически изолируют и заставляют расширяться по адиабате 2 – 3 , пока её температура не достигает температуры холодильника . При адиабатическом расширении система также совершает некоторую работу против внешнего давления. В состоянии 3 систему приводят в тепловой контакт с холодильником и непрерывным увеличением давления изотермически сжимают её до некоторого состояния 4. При этом над системой производится работа (т.е. сама система совершает отрицательную работу
), и она отдаёт холодильнику некоторое количество тепла
. Состояние 4 выбирается так, чтобы можно было сжатием по адиабате 4 – 1 вернуть систему в исходное состояние. Для этого над системой надо совершить работу
(система должна произвести отрицательную работу
). В результате кругового процесса Карно внутренняя энергия системы не изменяется , поэтому произведённая работа

Рассчитаем коэффициент полезного действия идеальной тепловой машины , работающей по циклу Карно. Эта величина равна отношению количества теплоты, превращённого в работу , к количеству теплоты, полученному от нагревателя .






Полезная работа за цикл равна сумме всех работ отдельных частей цикла:

Работа изотермического расширения:

,

адиабатического расширения:

,

изотермического сжатия:

,

адиабатического сжатия:

Адиабатические участки цикла не влияют на общий результат , т.к. работы на них равны и противоположны по знаку, следовательно
.

. (1)

Так как состояния газа, описываемые точками 2 и 3 лежат на одной адиабате, то параметры газа связаны уравнением Пуассона:

.

Аналогично для точек 4 и 1:

Разделив почленно эти уравнения, получим:


, тогда из (1) получается





То есть КПД цикла Карно определяется только температурами нагревателя и холодильника .

Теорема Карно (без доказательства): КПД всех обратимых машин, работающих при одних и тех же температурах нагревателя и холодильника одинаков и определяется только температурами нагревателя и холодильника .

Замечание: КПД реальной тепловой машины всегда ниже , чем КПД идеальной тепловой машины (в реальной машине существуют потери тепла , которые не учитываются при рассмотрении идеальной машины).


3. Принцип действия теплового двигателя и холодильной машины

Любой тепловой двигатель состоит из 3-х основных частей : рабочего тела, нагревателя и холодильника .

Рабочее тело получает некоторое количество теплоты , от нагревателя. При сжатии газ передаёт некоторое количество теплоты холодильнику. Полученная работа , совершаемая двигателем за цикл:


(Замечание: реальные тепловые двигатели обычно работают по так называемому разомкнутому циклу , когда газ после расширения выбрасывается , и сжимается новая порция . Однако это существенно не влияет на термодинамику процесса. В замкнутом цикле расширяется и сжимается одна и та же порция. ).

Холодильная машина . Цикл Карно обратим, следовательно, его можно провести в обратном направлении . (4-3-2-1-4 (рис.15.3)) От холодильной камеры поглощается тепло .





Нагревателю рабочее тело передаёт некоторое количество теплоты . Внешние силы совершают работу
, тогда

В результате цикла некоторое количество теплоты переходит от холодного тела к телу с более высокой температурой .

Реально рабочим телом в холодильной установке обычно служат пары легкокипящих жидкостей – аммиак, фреон и т. п. К машине подводится энергия от


Рис. 15.3

электрической сети. За счёт этой энергии и совершается процесс “передачи теплоты ” от холодильной камеры к более нагретым телам (к окружающей среде).

Эффективность холодильной установки оценивается по холодильному коэффициенту:




Тепловой насос. Это непрерывно действующая машина, которая за счёт затрат работы (электроэнергии) отбирает тепло от источника с низкой температурой (чаще всего близкой к температуре окружающей среды ) и передаёт источнику тепла с более высокой температурой количество теплоты , равна сумме тепла, отобранного от низкотемпературного источника и затраченной работы:
.


всегда больше единицы (максимально возможный
).

Для сравнения : если отапливать помещение с помощью обычных электронагревателей , то количество теплоты , выделенное в нагревательных элементах, в точности равно расходу электроэнергии .

4 . Энтропия. Закон возрастания энтропии

В термодинамике понятие “энтропия” было введено немецким физиком Р. Клаузиусом (1865 г.).

Из статической физики: отношение количества теплоты
, сообщаемого системе, к температуре (системы) есть приращение некоторой функции состояния (энтропий).

Каждое состояние тела характеризуется определённым значением энтропии . Если обозначить энтропию в состояниях 1 и 2 как и , то по определению для обратимых процессов:





Значение произвольной постоянной, с которой определена энтропия, не играет роли. Физический смысл имеет не сама энтропия, а разность энтропий .

Закон возрастания энтропии .

Допустим, что изолированная система переходит из равновесного






(для обратного процесса знак “=” , для необратимого “Для нашего перехода 1 – 2 – 1:


.

Так как процесс 2 – 1 обратимый, то будет равенство. (Закон возрастания энтропии ).
5. Статистический вес (термодинамическая вероятность).

Под термодинамической вероятностью понимается число микросостояний (микрораспределений, например, распределений молекул по пространству или энергии) которыми может определяться рассматриваемое макрораспределение .



3-я и 4-я – в первой и т.д. (рис. 15.5).

,
(энтропия определяется с точностью до константы

const),
где
константа Больцмана,
термодинамическая вероятность.


Второе начало термодинамики и его статистическое толкование

  1. Формулировка Больцмана:
Все процессы в природе протекают в направлении, приводящим к увеличению вероятности состояния .

  1. Формулировка Клаузиуса:
Невозможны такие процессы, единственным конечным результатом которых был бы переход тепла от тела менее нагретого, к телу более нагретому . можно оценить используя соотношение:
.

, тогда

Это означает, что на каждый
случаев переходов
от тела с температурой 301 К к телу с температурой 300 К может произойти один случай перехода того же количества теплоты от тела с температурой 300 К к телу с температурой 301 К. (Заметим, что для совсем малого количества теплоты
вероятности становится сравнимыми и для таких случаев второе начало применить уже нельзя.).

Вообще же, говоря если в системе имеется многовариантность путей, процессов, то, рассчитав энтропию конечных состояний, можно теоретически определить вероятность того или иного пути, процесса , не производя их реально и в этом важное практическое применение формулы, связывающей термодинамическую вероятность с энтропией.


Вопросы для самоконтроля

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1.Иродов И.Е . Физика макросистем. - М. - С. - Пб.: Физматлит,

2. Савельев И.В . Курс общей физики: В 3 т. – М.: Наука, 1977. Т.1. – 432с.

3.Матвеев А.Н. Молекулярная физика. – М.: Высш. Шк., 1987.


4.Сивухин Д.В. Общий курс физики: В 5т. – М.: Наука, 1975. т.2.
5.Телеснин Р.В . Молекулярная физика. – М.: Высш. шк., 1973. –
6.Зисман Г.А., Тодес О.М. Курс общей физики: В 3т. – М.:

Наука., 1969. Т 1. – 340с.

7.Трофимова Т.И . Курс физики. – М.: Высш. шк., 1990. – 478с.

8. Кунин В.Н . Конспект лекций по трудным разделам физики

Владим. политехн. ин-т. – Владимир, 1982/ – 52с.

9.Физика. Программа, методические указания и задачи для

студентов – заочников (с примерами решения) / Сост.: А.Ф. Гал-

кин, А.А. Кулиш, В.Н. Кунин и др.; Под ред. А.А. Кулиша; Вла-

дим. гос. ун-т. – Владимир, 2002. – 128с.

10.Методические указания для самостоятельной работы по фи

зике / Сост.: Е.В. Орлик, Э.Д. Корж, В.Г. Прокошев; Владим.

гос. ун-т. – Владимир, 1988. – 48с.

Лекция № 7. молекулярно-кинетическая теория

идеального газа………………………………………………….4

Л екция № 8. элементы классической статистики

(статистической физике)……………………………………12

Лекция № 9. реальные газы……………………………………………………..25

Лекция № 10. свойства жидкостей………………………………………….32

Лекция № 11. свойства твердых тел…………………………………….......40

Лекция № 12. фазовые равновесия и фазовые переходы………….47