Расшифровка обозначений на smd компонентах. Справочник на SMD компоненты

SMD (S urface M ounted D evice ), что в переводе с английского означает как "прибор, монтируемый на поверхность". В нашем случае поверхностью является печатная плата.

Вот на такие печатные платы устанавливаются SMD компоненты. SMD компоненты не вставляются в отверстия плат, они запаиваются на контактные дорожки (я их называю пятачками), которые расположены прямо на поверхности печатной платы. На фото ниже контактные площадки оловянного цвета на плате мобильного телефона, после того, как убраны все SMD компоненты.



В наш бурный век электроники главными преимуществами электронного изделия являются малые габариты, надежность, удобство монтажа и демонтажа (разборка оборудования), малое потребление энергии а также удобное юзабилити (от английского - удобство использования). Все эти преимущества ну никак не возможны без технологии поверхностного монтажа - SMT технологии (S urface M ount T echnology ), и конечно же без SMD компонентов. Но почему? Давайте подробнее рассмотрим этот вопрос.

Самыми важными преимуществами SMD компонентов являются, конечно же, их маленькие габариты. На фото ниже простые резисторы и SMD резисторы.





Благодаря малым габаритам, можно размещать больше SMD компонентов на единицу площади, чем простых. Следовательно возрастает плотность монтажа и в результате этого уменьшаются габариты электронного устройства. А так как вес SMD компонента в разы легче, чем вес того же самого простого компонента, то и масса радиоаппаратуры будет также во много раз легче.

SMD компоненты намного проще выпаивать, для этого нам нужна паяльная станция с феном. Как выпаивать и запаивать SMD компоненты, можете прочитать в статье Как правильно паять SMD . Запаивать их намного труднее, в производстве их располагают на печатной плате специальные роботы. Вручную в производстве их никто не запаивает, кроме радиолюбителей и ремонтников радиоаппаратуры.

Так как в аппаратуре с SMD компонентами очень плотный монтаж, то и дорожек в плате должно быть больше. Но дорожки не влезают на одну поверхность, поэтому печатные платы делают многослойными. Если аппаратура сложная и очень большая плотность монтажа компонентов, то и следовательно в плате будет больше слоев. Это как многослойный торт из коржей. Это означает, что печатные дорожки, связывающие SMD компоненты находятся прямо внутри платы и их никак нельзя увидеть. Пример многослойных плат - платы мобильных телефонов и платы компьютера или ноутбука (материнка, видеокарта, оператива). На фото ниже синяя плата - Iphone 3g, зеленая плата - материнка компа.





Все ремонтники радиоаппаратуры знают, что если перегреть плату, то она вздувается пузырем. При этом межслойное связи рвутся и плате приходит полная жопа без какого-либо восстановления. Поэтому главным козырем при замене SMD компонентов является правильно подобранная температура.

На некоторых платах используют обе стороны печатной платы, при этом плотность монтажа, как вы поняли, повышается вдвое. Это еще один плюс SMT технологии. Ах да, стоит учесть еще и тот фактор, что материала для производства SMD компонентов уходит в разы меньше, а себестоимость их при серийном производстве в миллионах штук обходится,в прямом смысле, в копейки. Короче говоря, одни плюсы:-). Но, раз есть плюсы, то должны быть и минусы... Но они очень незначительные, и нас с Вами собственно не касаются. Это дорогое оборудование и технологии при производстве и разработке SMD компонентов, а также точность температуры пайки.

Что же все таки использовать в своих конструкциях? Если у вас не дрожат руки, и Вы хотите сделать, скажем, маленького радиожучка, то выбор очевиден. Но все таки, в радиолюбительских конструкциях габариты особо не играют большой роли, да и паять массивные радиоэлементы проще и удобнее. Некоторые радиолюбители используют и то и другое вперемешку;-).

Давайте рассмотрим основные SMD элементы, используемые в наших современных технологиях. Резисторы, конденсаторы, катушки индуктивности с малым номиналом, предохранители, диоды и другие компоненты выглядят как обычные прямоугольнички.

На платах без схемы невозможно отгадать, то ли это резистор, то ли кондер то ли хрен пойми что. На крупных SMD элементах все таки ставят код или цифры, чтобы определить их характеристику и параметры. На фото ниже в красном прямоугольнике помечены эти элементы. Без схемы на устройство невозможно сказать какие это элементы.



Типоразмеры SMD компонентов могут быть разные. Это зависит от технических характеристик этих компонентов. В основном, чем больше номинал компонента, тем он больше в размерах. Вот есть описание типоразмеров для резисторов и конденсаторов. Вот, например, прямоугольный SMD конденсатор желтого цвета. Еще их называют танталовыми или просто танталами:



А вот так выглядят SMD транзисторы:





Есть еще и такие виды SMD транзисторов:



Катушки индуктивности, которые обладают большим номиналом, в SMD исполнении выглядят во так:





Ну и, конечно, как же без микросхем в наш век микроэлектроники! Существует очень много SMD типов корпусов микросхем , но я их делю в основном на две группы:

1) Микрухи, у которых выводы параллельны печатной плате и находятся с двух сторон или по периметру.



2) Микрухи, у которых выводы находятся под самой микрухой. Это особый класс микросхем, называется BGA (от английского Ball grid array - массив из шариков). Выводы таких микросхем представляют из себя простые припойные шарики одинаковой величины. На фото снизу сама микра, и обратная ее сторона, состоящая из шариковых выводов. Микросхемы BGA удобны производителям тем, что они очень сильно экономят место на печатной плате, потому что таких шариков под какой-нибудь микрухой BGA могут быть тысячи, что значительно облегчает жизнь производителям, но нисколько не облегчает жизнь ремонтникам:-) .



Можно еще много рассказывать про SMD технологию и компоненты. В этой статейке я изложил в основном поверхностный обзор мира SMD компонентов. Каждый день разрабатываются все новые микрухи и компоненты. Меньше, тоньше, надежнее. Некоторые начинающие электронщики возмущаются мол: " Какого фига нам в школе, в универе или еще где-нибудь рассказывают про какие-то там советские транзисторы или старые советские диоды, зачем это нам надо, ведь сейчас век микроэлектроники?". Вот здесь они заблуждаются... Диод, он и в Африке диод, хоть SMD, хоть советский, разница - в габаритах. Но работать он будет точно также, как и советский. Просто знайте, что микроэлектроника - от слово "микрос", что с латинского означает "малый", но законы электроники везде одинаковы, что в большом радиоэлементе, что в малюсеньком SMD.


Справочники по SMD

SMD - Абривиатура из английского языка, от Surface Mounted Device - Устройство монтируемое на поверхность, т.е на печатную плату, а именно на специальные контактные площадки расположенные на ее поверхности. Применение SMD компонентов позволяет существенно уменьшить габаритыи массу любой радиолюбительской конструкции.


В справочнике находится информация на расшифровку кодов более 34 тысяч микросхем, диодов и транзисторов, даны схемы включения и реализована удобная система поиска информации

Крайне полезный справочник в библиотеке радиолюбителя, с очень понятным поиском, содержит информацию почти по всем активным радиокомпонентам микросхемам, транзисторам, диодам и другим, включая SMD.

Из-за своих очень маленьких габоритов у многих начинающих радиолюбителей возникает вопрос "Как паять SMD ?". В этой небольшой статье мы постпрались ответить на этот вопрос на практическом примере.

О SMD

Но есть и недостатки, во первых пайка SMDкомпонентов, процесс интересный и требует базовых навыков и опыта. Во вторых, если SMD используемое в многослойных печатных платах, и расположенное внутри последних, выходит из строя поменять его просто не возможно. А при демонтаже и замене поверхностных радиокомпонентов, необходимо строго соблюдать температурный режим, иначе повреждения внутренней структуры не избежать.

Внешне SMD радиоэлементы выглядят как маленькие прямоугольники с кодовым или цифровым обозначением. И только по ним и можно понять, что это: резистор, конденсатор,транзистор или микросхема. SMD компонентом в современной электроники может быть любой радиоэлемент. На очень маленьких SMD кодовое обозначение может и вовсе отсутствовать, в этом случае индифицировать элемент поможет только схема или сервисный мануал. Внеший вид печатной платы с различными SMD радиокомпонентами, представлен на рисунке ниже:



Мы уже познакомились с основными радиодеталями: резисторами, конденсаторами, диодами, транзисторами, микросхемами и т.п., а также изучили, как они монтируются на печатную плату. Ещё раз вспомним основные этапы этого процесса: выводы всех компонентов пропускают в отверстия, имеющиеся в печатной плате. После чего выводы обрезаются, и затем с обратной стороны платы производится пайка (см. рис.1).
Этот уже известный нам процесс называется DIP-монтаж. Такой монтаж очень удобен для начинающих радиолюбителей: компоненты крупные, паять их можно даже большим «советским» паяльником без помощи лупы или микроскопа. Именно поэтому все наборы Мастер Кит для самостоятельной пайки подразумевают DIP-монтаж.

Рис. 1. DIP-монтаж

Но DIP-монтаж имеет очень существенные недостатки:

Крупные радиодетали не подходят для создания современных миниатюрных электронных устройств;
- выводные радиодетали дороже в производстве;
- печатная плата для DIP-монтажа также обходится дороже из-за необходимости сверления множества отверстий;
- DIP-монтаж сложно автоматизировать: в большинстве случаях даже на крупных заводах по производству электронику установку и пайку DIP-деталей приходится выполнять вручную. Это очень дорого и долго.

Поэтому DIP-монтаж при производстве современной электроники практически не используется, и на смену ему пришёл так называемый SMD-процесс, являющийся стандартом сегодняшнего дня. Поэтому любой радиолюбитель должен иметь о нём хотя бы общее представление.

SMD монтаж

SMD (Surface Mounted Device) переводится с английского как "компонент, монтируемый на поверхность". SMD-компоненты также иногда называют ЧИП-компонентами.
Процесс монтажа и пайки чип-компонентов правильно называть SMT-процессом (от англ. «surface mount technology» – технология поверхностного монтажа). Говорить «SMD-монтаж» не совсем корректно, но в России прижился именно такой вариант названия техпроцесса, поэтому и мы будем говорить так же.
На рис. 2. показан участок платы SMD-монтажа. Такая же плата, выполненная на DIP-элементах, будет иметь в несколько раз большие габариты.


Рис.2. SMD-монтаж

SMD монтаж имеет неоспоримые преимущества:

Радиодетали дешёвы в производстве и могут быть сколь угодно миниатюрны;
- печатные платы также обходятся дешевле из-за отсутствия множественной сверловки;
- монтаж легко автоматизировать: установку и пайку компонентов производят специальные роботы. Также отсутствует такая технологическая операция, как обрезка выводов.

SMD-резисторы

Знакомство с чип-компонентами логичнее всего начать с резисторов, как с самых простых и массовых радиодеталей.
SMD-резистор по своим физическим свойствам аналогичен уже изученному нами «обычному», выводному варианту. Все его физические параметры (сопротивление, точность, мощность) точно такие же, только корпус другой. Это же правило относится и ко всем другим SMD-компонентам.


Рис. 3. ЧИП-резисторы

Типоразмеры SMD-резисторов

Мы уже знаем, что выводные резисторы имеют определённую сетку стандартных типоразмеров, зависящих от их мощности: 0,125W, 0,25W, 0,5W, 1W и т.п.
Стандартная сетка типоразмеров имеется и у чип-резисторов, только в этом случае типоразмер обозначается кодом из четырёх цифр: 0402, 0603, 0805, 1206 и т.п.
Основные типоразмеры резисторов и их технические характеристики приведены на рис.4.


Рис. 4 Основные типоразмеры и параметры чип-резисторов

Маркировка SMD-резисторов

Резисторы маркируются кодом на корпусе.
Если в коде три или четыре цифры, то последняя цифра означает количество нулей, На рис. 5. резистор с кодом «223» имеет такое сопротивление: 22 (и три нуля справа) Ом = 22000 Ом = 22 кОм. Резистор с кодом «8202» имеет сопротивление: 820 (и два нуля справа) Ом = 82000 Ом = 82 кОм.
В некоторых случаях маркировка цифробуквенная. Например, резистор с кодом 4R7 имеет сопротивление 4.7 Ом, а резистор с кодом 0R22 – 0.22 Ом (здесь буква R является знаком-разделителем).
Встречаются и резисторы нулевого сопротивления, или резисторы-перемычки. Часто они используются как предохранители.
Конечно, можно не запоминать систему кодового обозначения, а просто измерить сопротивление резистора мультиметром.


Рис. 5 Маркировка чип-резисторов

Керамические SMD-конденсаторы

Внешне SMD-конденсаторы очень похожи на резисторы (см. рис.6.). Есть только одна проблема: код ёмкости на них не нанесён, поэтому единственный способ ёё определения – измерение с помощью мультиметра, имеющего режим измерения ёмкости.
SMD-конденсаторы также выпускаются в стандартных типоразмерах, как правило, аналогичных типоразмерам резисторов (см. выше).


Рис. 6. Керамические SMD-конденсаторы

Электролитические SMS-конденсаторы


Рис.7. Электролитические SMS-конденсаторы

Эти конденсаторы похожи на своих выводных собратьев, и маркировка на них обычно явная: ёмкость и рабочее напряжение. Полоской на «шляпке» конденсатора маркируется его минусовой вывод.

SMD-транзисторы



Рис.8. SMD-транзистор

Транзисторы мелкие, поэтому написать на них их полное наименование не получается. Ограничиваются кодовой маркировкой, причём какого-то международного стандарта обозначений нет. Например, код 1E может обозначать тип транзистора BC847A, а может – какого-нибудь другого. Но это обстоятельство абсолютно не беспокоит ни производителей, ни рядовых потребителей электроники. Сложности могут возникнуть только при ремонте. Определить тип транзистора, установленного на печатную плату, без документации производителя на эту плату иногда бывает очень сложно.

SMD-диоды и SMD-светодиоды

Фотографии некоторых диодов приведены на рисунке ниже:


Рис.9. SMD-диоды и SMD-светодиоды

На корпусе диода обязательно указывается полярность в виде полосы ближе к одному из краев. Обычно полосой маркируется вывод катода.

SMD-cветодиод тоже имеет полярность, которая обозначается либо точкой вблизи одного из выводов, либо ещё каким-то образом (подробно об этом можно узнать в документации производителя компонента).

Определить тип SMD-диода или светодиода, как и в случае с транзистором, сложно: на корпусе диода выштамповывается малоинформативный код, а на корпусе светодиода чаще всего вообще нет никаких меток, кроме метки полярности. Разработчики и производители современной электроники мало заботятся о её ремонтопригодности. Подразумевается, что ремонтировать печатную плату будет сервисный инженер, имеющий полную документацию на конкретное изделие. В такой документации чётко описано, на каком месте печатной платы установлен тот или иной компонент.

Установка и пайка SMD-компонентов

SMD-монтаж оптимизирован в первую очередь для автоматической сборки специальными промышленными роботами. Но любительские радиолюбительские конструкции также вполне могут выполняться на чип-компонентах: при достаточной аккуратности и внимательности паять детали размером с рисовое зёрнышко можно самым обычным паяльником, нужно знать только некоторые тонкости.

Но это тема для отдельного большого урока, поэтому подробнее об автоматическом и ручном SMD-монтаже будет рассказано отдельно.