Спектр светодиодной лампы. Взгляд изнутри: светодиодные лампочки Цвет свечения светодиодов полного спектра

Белый светодиод

В отличие от традиционных ламп накаливания и люминесцентных ламп, дающих белый свет, светодиоды генерируют свет очень в узком диапазоне спектра, т.е. дают почти монохромное свечение. Именно поэтому светодиоды давно используют в контрольных панелях и гирляндах, а сегодня особенно их эффективно используют в световых установках, излучающих какой-либо определенный основной цвет, к примеру, в светофорах, указателях, сигнальных огнях.

Принцип устройства белого светодиода

Принцип устройства белого светодиода не очень сложен, сложна технологи реализации. Чтобы светодиод излучал белый свет приходится прибегать к дополнительным техническим элементам и техническим решениям. Основными способами для получения белого свечения в светодиодах являются:

    нанесение слоя люминофора, на синие кристаллы;

    нанесение нескольких слоев люминофора на кристаллы, излучающие свет, близкий по цвету к ультрафиолетовому;

    RGB-системы, в которых за счет смешения света множества монохромных красных, зеленых и синих диодов достигается свечение белого цвета.

В первом случае, чаще всего, используют кристаллы синих светодиодов, которые покрывают люминофором, желтым фосфором. Фосфор поглощает некоторое количество синего света и излучает желтый свет. При смешении оставшегося непоглащенного синего света с желтым получается свет близкий к белому.

Второй метод представляет собой не так давно разработанную технология получения твердотельных источников белого света на основе комбинации диода, излучающего свечение, близкое по цвету к ультрафиолетовому, и нескольких слоев люминофора из фосфора различного состава.

В последнем случае белый свет получают классическим путем, смешивая три базовых цвета (красного, зеленого и синего). Качество белого света улучшают за счет дополнения конфигурации RGB желтыми светодиодами, что позволяет охватывать желтую часть спектра.

Достоинства и недостатки былых светодиодов

У каждого из этих способов есть свои положительные о отрицательные стороны. Так, для белых люминофорных светодиодов, изготавливаемых по принципу комбинации синих кристаллов с фосфорным люминофором характерны достаточно низкий индекс цветопередачи, склонность к генерации белого света холодных тонов, неоднородность оттенка свечения при достаточно высоком световом потоке и относительно небольшой стоимости.

Белые люминофорные светодиоды , полученные на основе комбинации диодов, с близким к ультрафиолетовому цвету свечения и разноцветных фосфоров, обладают отличным индексом цветопередачи, могут генерировать белый свет более теплых оттенков и отличаются большей однородностью оттенков свечения от диода к диоду. Однако при этом они потребляют больше электроэнергии и не столь ярки, как первые.

В свою очередь RGB-светодиоды позволяют создавать светодинамические эффекты в световых установках со сменой цвета свечения и различными тонами белого свечения и потенциально может обеспечивать очень высокий индекс цветопередачи. В то же время светодиоды отдельных цветов по-разному реагируют на величины рабочего тока, окружающую их температуру и регулирование яркости, и потому RGB-светодиоды нуждаются в достаточно сложных и дорогостоящих системах управления для достижения стабильной работы.

Чтобы светильники на основе белых светодиодов давали более качественный свет, т.е. более полный спектр, в конструкции светильников используют

Спектр излучения светодиода определяется шириной запрещенной зоны используемого полу­проводникового материала, типом легирующих примесей, уров­нем легирования и механизмом излучательной рекомбинации . Как указывалось выше, основными материалами для изготовления эффективных светодиодов являются бинарные по­лупроводниковые соединения А III В V и их твердые растворы. На рис. 4.4 в относительных единицах представлены спектры излу­чения при комнатной температуре некоторых типичных светоди­одов, выпускаемых промышленностью.

Наибольшей эффективностью облада­ют светодиоды на основе арсенида галлия GaAs с шириной запрещенной зоны E = 1,45эВ. Следовательно, максимум спектральной характеристики излучения собственно GaAs наблюдается на длине волны λ max =1,24/1,4 = 0,9 мкм, что соответствует инфракрасной области. При легировании GaAs различными примесями (теллур, селен, литий и др.), имеющими различные глубины залегания в запрещенной зоне, светодиоды могут излучать в диапазоне λ max = 0,9…0,96 мкм. Светодиоды на GaAs имеют наиболее высокую квантовую эффективность (η внеш =10…30 % в зависимости от конструкции). Важно, что спектр излучения GaAs -светодиодов очень хорошо соответствует спектру фоточувствительности наиболее распрост­раненных Si -фотодиодов.

Светодиоды на более длинноволновую область изготавлива­ются на основе прямозонных твердых растворов Ga х 1п 1-х А s и Ga х 1п 1-х А s 1-у Р у . Для них преобладающей является квазимежзонная излучательная рекомбинация.

Важно, что максимум спек­тра излучения таких светодиодов задается составом твердого раствора. Изменяя х и у , можно изготовить светодиод на задан­ную область спектра, например, совпадающую с минимумом потерь в оптическом волокне или с максимумом спектра погло­щения какого-либо вещества, концентрацию которого предстоит контролировать. Светодиоды на область спектра λ >5 мкм могут быть изгото­влены на основе халькогенидов свинца: Р b х S п 1- x Те и ртути: Cd х Hg 1- x Те .

Фосфид галлия (G aP ) имеет ширину запрещенной зоны E = 2,25 эВ, что определяет длину волны излучения λ max =0,56 мкм. Это соответствует зеленому цвету свечения. При легировании примесями (N , O 2 , Zn ) такие светодиоды могут излучать красный, желтый, зеленый свет. Таким образом, GaP светодиоды предназначены для работы в видимой части спектра. Для GaP – η внеш = 7…0,7 %.

Светоизлучающие диоды на коротковолновую область види­мого спектра, работающие в голубом, синем и фиолетовом диа­пазонах, могут быть созданы на основе нитрида галлия GaN и гетеропереходов с использованием твердых растворов Ga х In 1- x N и Ga 1- x Al x N . Светодиоды на основе GaN дают излучение λ max =0,44 мкм, но с очень низкой эффективностью η внеш 0,5 %.

Для этой же цели применяют карбид кремния SiC . Хотя диоды на основе SiC имеют малый η внеш  0,01 %, но обладают высокой временной и температурной стабильностью. На их основе создают эталонные источники излучения.

Рис.4.4. Спектры излучения светодиодов.

Для излучающих диодов как инфракрасного, так и видимого излучения широко применяют тройные соединения, изготовленные на основе твердого раствора галлий-алюминий-мышьяк GaAlAs . Применяют также твердые растворы на основе галлий-мышьяк-фосфор GaAsP и индий-галлий-фосфор InGaP . По обобщенному показателю (Р изл , быстродействие) GaAlAs наиболее полно удовлетворяет требованиям оптоэлектроники. В этом материале часть атомов Ga в кристалле GaAs замещается атомами Al . По мере увеличения доли замещенных атомов ширина запрещенной зоны меняется от E =1,45 эВ (GaAs ) до E =2,16 эВ (чистый AlAs ). Таким образом, такие светодиоды могут излучать на длине волны max =0,6…0,9 мкм, т.е. генерировать излучение как в видимой, так и инфракрасной области спектра. Внешний квантовый выход для этого материала составляет η внеш =1,2…12 %.

Яркость высвечивания светодиода или мощность излучения практически линейно зависит от тока через диод в широком диапазоне изменения токов. Исключение составляют красные GaP - светодиоды, у которых с ростом тока наступает насыщение яркости. При постоянном токе через светодиод его яркость с ростом температуры уменьшается. Для красных GaP - светодиодов повышение температуры по сравнению с комнатной на 20 o C уменьшает их яркость примерно на 10%, а зеленых - на 6%. С ростом температуры сокращается срок службы светодиодов. Также сокращается срок службы светодиода с увеличением его тока.

С развитием светодиодной техники для нее постоянно находится все больше областей применения, она постепенно вытесняет люминесцентные и обычные лампы накаливания. Светодиоды намного практичнее в процессе эксплуатации, в 10 раз меньше потребляют электроэнергии, долговечнее, устойчивы к механическим воздействиям. Благодаря свойствам светодиодов обеспечивать излучение в определенных спектрах светового диапазона, их стали активно использовать для выращивания растений.

Интервалы спектров освещения, способствующие росту растений

Известно, что все растения развиваются благодаря процессу фотосинтеза, более глубокие изучения показали, что он активнее происходит в освещении синего и красного диапазона. Статистика различных экспериментов показывает, как некоторые растения отличаются по составу хлорофилла, от этого зависит интенсивность протекания фотосинтеза. Разные культуры растений в зависимости от этапа роста поглощают определенный участок спектра освещенности.

Зелень типа лука, петрушки, укропа активнее растет при синем спектре (длина волны 445 nm). На раннем этапе развития этот диапазон предпочитают и саженцы овощных культур. Когда наступает период цветения, завязи и созревания плодов, активно поглощается свет красного спектра в диапазоне 660 nm. Некоторым овощным культурам для благоприятного роста подходит белый свет широкого спектра.

Изучив эти свойства, можно понять, что для технологии выращивания растений в тепличных условиях при искусственном освещении легче всего адаптировать светодиоды.

Источники искусственного освещения

Ранее для растений в теплицах активно использовались белые светодиоды, люминесцентные или газоразрядные лампы широкого спектра излучения. Такая подсветка не совсем эффективна для стимулирования роста растений. Большая энергия тратится на освещение желто-зеленого диапазона, который бесполезен для роста саженцев.


На первом этапе использовались простые светодиоды красного и синего света, светодиодная лента. Но эти диоды имели довольно широкий рассеянный интервал за пределами красного и синего спектра, высокую стоимость и низкую интенсивность освещения. В процессе последовательных доработок кристаллы светодиодов стали покрывать слоем люминофора, который обладает свойствами пропускать только синие и красные лучи. Новые фитолампы излучают свет пурпурного цвета. Технологии с применением люминофора позволили добиться максимального эффекта по всем параметрам:

  • низкая себестоимость производства;
  • максимальная концентрация энергии излучения в синем и красном диапазонах;
  • максимальная интенсивность излучения;
  • экономичный режим потребления электроэнергии.

Такие светодиоды обеспечивают активный процесс фотосинтеза, стимулируя рост растений. Работы по совершенствованию параметров излучаемого спектра постоянно продолжаются, производители пытаются сделать фитофотодиоды, максимально приближая его к спектру солнечного света. Одним из современных образцов являются фитосветодиоды излучения полного спектра Bridgelux 35 мм и Epistar, первый имеет более выпуклую рассеивающую линзу.


Внешний вид Bridgelux 35 мм

Технические характеристики Bridgelux 35 мм:

  • номинальная мощность – 1 Вт;
  • напряжение от 3.0 до 3.4 В;
  • ток – 350 мА;
  • полный спектр цвета для растений 400–840 nm;
  • ресурс работы – 50 000 часов;
  • направленность рассеивания луча – 120 градусов;
  • габариты – Ø чипа с корпусом 9 мм, Ø линзы 5.6 мм, высота всей конструкции чипа 6 мм.

Особенность этих фитосветодиодов в том, что не требуется несколько чипов с разными спектрами излучения – синим или красным. В данном случае все смонтировано в одном чипе с широким спектром подсветки, где преобладают синий и красный цвета.


Сравнительный анализ спектров красного светодиода и фитофотодиода

Интервалы желтого, зеленого и других спектров значительно снижены. Это позволяет сконцентрировать энергию на излучении полезного цвета.

Основные достоинства фитосветодиодов

  • Спектр излучения охватывает полностью диапазон от 400 до 840 nm.
  • Распределение интенсивности излучения участков спектра, она максимально приближена к солнечному свету.
  • Решается проблема использования нескольких видов светодиодов с разными спектрами, когда в светильник вставляют красные и синие светодиоды.
  • Фитосветодиод эффективно стимулирует рост растений весь период развития: до цветения, во время цветения, завязи плодов и созревания. Не требуется смены источников света на различных стадиях. Фитофотодиод собирается на основе одного кристалла.

Светильники с фитосветодиодными элементами, имеющими полный спектр солнечного света, работают в 1,9 раза эффективнее, чем простые фитолампы с пиками красного и синего диапазона. И в 1,2 раза лучше, чем сборки на отдельных диодах различного спектра.


Пример конструкции для подсветки саженцев фитосветодиодами

Замечено, что под фитолампами красного и синего спектра ростки растут выше, но завязей на цветках меньше. Фитофотодиоды с полным спектром имеют менее интенсивное излучение синего диапазона по сравнению с красным. Контрасты спектра сбалансированы так, что светодиоды для растений обеспечивают не значительный рост по высоте, а максимальное количество плодов.

Превосходство фитофотодиодов с полным спектром перед другими моделями очевидно. Чтобы они еще более широко применялись, остается совершенствовать детали по увеличению интенсивности светового потока.

Существует два распространенных пути получения белого цвета свечения достаточной интенсивности с помощью светодиодов. Первый - это объединение в одном корпусе светодиода чипов трех основных цветов - красного, зеленого и синего. Смешением этих цветов получается белый цвет, кроме того, меняя интенсивность основных цветов, получается любой цветовой оттенок, что применяется при изготовлении . Второй путь - использование люминофора для конвертирования излучения синего или ультрафиолетового светодиода в белый цвет. Подобный принцип используется в лампах дневного света. В настоящее время, второй способ превалирует из-за низкой стоимости и бóльшего светового выхода люминофорных светодиодов.

Люминофоры

Люминофоры (термин происходит от латинского lumen - свет и греческого phoros - несущий), это вещества, способные светиться под действием различного рода возбуждений. По способу возбуждения различают фотолюминофоры, рентгенолюминофоры, радиолюминофоры, катодолюминофоры, электролюминофоры. Некоторые люминофоры бывают смешанных типов возбуждения, например, фото-, катодо- и электролюминофор ZnS·Cu. По химической структуре различают органические люминофоры - органолюминофоры, и неорганические - фосфóры. Фосфóры, имеющие кристаллическую структуру, называют кристаллофосфóрами. Отношение излученной энергии к поглощённой называется квантовым выходом.

Свечение люминофора обуславливается как свойствами основного вещества, так и наличием активатора (примеси). Активатор создает в основном веществе (основании) центры свечения. Наименование активированных люминофоров складывается из имени основания и активатора, например: ZnS·Cu,Co означает люминофор ZnS, активированный медью и кобальтом. Если основание смешанное, то перечисляют сначала названия оснований, а затем активаторов, например, ZnS,CdS·Cu,Со.

Возникновение у неорганических веществ люминесцентных свойств, связано с образованием в кристаллической решетке основы люминофора в процессе синтеза структурных и примесных дефектов. Энергия, возбуждающая люминофор, может поглощаться как люминесцентными центрами (активаторное или примесное поглощение), так и основой люминофора (фундаментальное поглощение). В первом случае, поглощение сопровождается либо переходом электронов внутри электронной оболочки на более высокие энергетические уровни, либо полным отрывом электрона от активатора (образуется «дырка»). Во втором случае, при поглощении энергии основой, в основном веществе образуются дырки и электроны. Дырки могут мигрировать по кристаллу и локализоваться на центрах люминесценции. Излучение происходит в результате возвращения электронов на более низкие энергетические уровни или при рекомбинации электрона с дыркой.

Люминофоры, в которых люминесценция связана с образованием и рекомбинацией разноименных зарядов (электронов и дырок), получили название рекомбинационных. Основой для них служат соединения полупро­водникового типа. В этих люминофорах кристаллическая решетка основы является той средой, в которой развивается процесс люминесценции. Это дает возможность, изменяя состав основы, широко варьировать свойства люминофоров. Изменение ширины запрещенной зоны при использовании одного и того же активатора плавно в больших пределах изменяет спектральный состав излучения. В зависимости от применения, предъявляются различные требования к параметрам люминофора: типу возбуждения, спектру возбуждения, спектру излучения, выходу излучения, временным характеристикам (времени нарастания свечения и длительности послесвечения). Наибольшее разнообразие параметров можно получить у кристаллофосфоров, меняя активаторы и состав основания.

Спектр возбуждения различных фотолюминофоров широк, от коротковолнового ультрафиолетового до инфракрасного. Спектр излучения также находится в видимой, инфракрасной или ультрафиолетовой областях. Спектр излучения может быть широким или узким и сильно зависит от концентрации люминофора и активатора, а также от температуры. Согласно правилу Стокса - Ломмеля, максимум спектра излучения смещен от максимума спектра поглощения в сторону длинных волн. Кроме того, спектр излучения обычно имеет значительную ширину. Это объясняется тем, что часть энергии, поглощаемой люминофором рассеивается в его решетке, переходя в тепло. Особое место занимают «антистоксовские» люминофоры, которые излучают энергию в более высокой области спектра.

Энергетический выход излучения люминофора зависит от вида возбуждения, его спектра и механизма преобразования. Он снижается при увеличении концентрации люминофора и активатора (концентрационное тушение) и температуры (температурное тушение). Яркость свечения нарастает с начала возбуждения в течение различного промежутка времени. Длительность послесвечения определяется характером преобразования и временем жизни возбуждённого состояния. Наиболее короткое время послесвечения имеют органолюминофоры, наиболее длительное - кристаллофосфоры.

Значительная часть кристаллофосфоров представляет собой полупроводниковые материалы с шириной запрещенной зоны 1-10 эв, люминесценция которых обусловлена примесью активатора или дефектами кристаллической решётки. В люминесцентных лампах применяются смеси кристаллофосфоров, например, смеси MgWO4 и (ZnBe)2 SiO4·Mn] или однокомпонентные люминофоры, например галофосфат кальция, активированный Sb и Mn. Люминофоры для целей освещения подбираются так, чтобы их свечение имело спектральный состав, близкий к спектру дневного света.

Органические люминофоры могут обладать высоким выходом и быстродействием. Цвет люминофора может быть подобран для любой видимой части спектра. Они применяются для люминесцентного анализа, изготовления люминесцирующих красок, указателей, оптического отбеливания тканей и т.д. Органические люминофоры выпускались в СССР под торговой маркой люминоры.

Люминофор в процессе работы подвержен изменению параметров с течением времени. Этот процесс называется старением (деградацией) люминофора. Старение в основном обусловлено физическими и химическими процессами как в слое люминофора, так и на его поверхности, возникновение безызлучательных центров, поглощение излучения в изменившемся слое люминофора.

Люминофор в светодиоде

Белые светодиоды чаще всего изготавливаются на основе синего кристалла InGaN и желтого люминофора. Желтые люминофоры, применяемые большинством производителей, это модифицированный иттрий-алюминиевый гранат, легированный трехвалентным церием (ИАГ). Спектр люминесценции этого люминофора характеризуется максимумом длины волны 530..560 нм. Длинноволновая часть спектра имеет бóльшую протяженность, чем коротковолновая. Модифицирование люминофора добавками гадолиния и галлия, позволяет сдвигать максимум спектра в холодную область (галлий) или в теплую (гадолиний).

Интересны спектральные данные люминофора, применяемого в Cree. Судя по спектру, кроме ИАГ в состав люминофора белого светодиода добавлен люминофор со смещенным в красную область максимумом излучения.

В отличие от люминесцентных ламп, используемый в светодиодах люминофор имеет бóльший срок службы, и старение люминофора определяется в основном температурой. Люминофор чаще всего наносят непосредственно на кристалл светодиода, который сильно нагревается. Другие факторы воздействия на люминофор имеют значительно меньшее значение для срока службы. Старение люминофора приводит не только к уменьшению яркости светодиода, но и к изменению оттенка его свечения. При сильной деградации люминофора хорошо заметен синий оттенок свечения. Это связано с изменением свойств люминофора, и с тем, что в спектре начинает доминировать собственное излучение светодиодного чипа. С внедрением технологии (remote phosphor), влияние температуры на скорость деградации люминофора снижается.

Белый светодиод

Мощный белый светодиод

Различают два вида белых светодиодов:

  • Многокристальные светодиоды, чаще - трехкомпонентные (RGB -светодиоды), имеющие в своём составе три полупроводниковых излучателя красного, зелёного и синего свечения, объединённые в одном корпусе.
  • Люминофорные светодиоды, создаваемые на основе ультрафиолетового или синего светодиода , имеющие в своем составе слой специального люминофора, преобразующего в результате фотолюминесценции часть излучения светодиода в свет в относительно широкой спектральной полосе с максимумом в области жёлтого (наиболее распространенная конструкция). Излучение светодиода и люминофора, смешиваясь, дают белый свет различных оттенков.

История изобретения

Первые полупроводниковые излучатели красного цвета для промышленного использования были получены Н. Холоньяком в 1962 году. В начале 70-х годов появились светодиоды желтого и зеленого цвета свечения. Световой выход в начале малоэффективных устройств к 1990 году достиг уровня в один люмен . В 1993 году Суджи Накамура, инженер компании Nichia (Япония) создал первый синий светодиод высокой яркости. Практически сразу появились светодиодные RGB устройства, поскольку синий, красный и зеленый цвета позволяли получить любой цвет, в том числе и белый. Белые люминофорные светодиоды впервые появились в 1996 г. В дальнейшем, технология быстро развивалась и к 2005 году световой выход светодиодов достиг значения 100 лм/Вт и более. Появились светодиоды с различными оттенками свечения, качество света позволило конкурировать с лампами накаливания и с ставшими уже традиционными люминисцентными лампами. Началось использование светодиодных осветительных устройств в быту, в внутреннем и уличном освещении .

RGB светодиоды

Белый свет может быть создан путем смешивания излучений светодиодов различного цвета. Наиболее распространена трихроматическая конструкция из красного (R), зелёного (G) и синего (B) источников, хотя встречаются бихроматические, тетрахроматические и более многоцветные варианты. Многоцветный светодиод, в отличие от других RGB полупроводниковых излучателей (светильники, лампы , кластеры) имеет один законченный корпус, чаще всего аналогичный одноцветному светодиоду. Светодиодные чипы располагаются рядом друг с другом и используют одну общую линзу и отражатель . Поскольку полупроводниковые чипы имеют конечный размер и собственные диаграммы направленности , такие светодиоды чаще всего имеют неравномерные угловые цветовые характеристики . Кроме того, для получения правильного соотношения цветов зачастую недостаточно установить расчётный ток , поскольку световой выход каждого чипа неизвестен заранее и подвержен изменениям в процессе работы. Для установки нужных оттенков, RGB светильники иногда оснащают специальными регулирующими устройствами .

Спектр RGB светодиода определяется спектром составляющих его полупроводниковых излучателей и имеет ярко выраженную линейчатую форму. Такой спектр сильно отличается от спектра солнца, следовательно индекс цветопередачи RGB светодиода невысок. RGB-светодиоды позволяют легко и в широких пределах управлять цветом свечения путем изменения тока каждого светодиода, входящего в триаду , регулировать цветовой тон излучаемого ими белого света прямо в процессе работы - вплоть до получения отдельных самостоятельных цветов.

Многоцветные светодиоды имеют зависимость светового выхода и цвета от температуры за счет различных характеристик составляющих прибор излучающих чипов, что сказывается в незначительном изменении цвета свечения в процессе работы . Срок службы многоцветного светодиода определяется долговечностью полупроводниковых чипов, зависит от конструкции и чаще всего превышает срок службы люминофорных светодиодов.

Многоцветные светодиоды используются в основном для декоративной и архитектурной подсветки , в электронных табло и в видеоэкранах .

Люминофорные светодиоды

Спектр одного из вариантов люминофорного светодиода

Комбинирование синего (чаще) или ультрафиолетового (реже) полупроводникового излучателя и люминофорного конвертера позволяет изготовить недорогой источник света с неплохими характеристиками. Самая распространенная конструкция такого светодиода содержит синий полупроводниковый чип нитрида галлия , модифицированный индием (InGaN) и люминофор с максимумом переизлучения в области жёлтого цвета - иттрий -алюминиевый гранат, легированный трёхвалентным церием (ИАГ). Часть мощности исходного излучения чипа покидает корпус светодиода, рассеиваясь в слое люминофора, другая часть поглощается люминофором и переизлучается в области меньших значений энергии. Спектр переизлучения захватывает широкую область от красного до зелёного, однако результирующий спектр такого светодиода имеет ярко выраженный провал в области зелёного-синезелёного цвета.

В зависимости от состава люминофора, выпускаются светодиоды с разной цветовой температурой («тёплые» и «холодные»). Путем комбинирования различных типов люминофоров, достигается значительное увеличение индекса цветопередачи (CRI или R a) , что позволяет говорить о возможности применения светодиодного освещения в критических для качества цветопередачи условиях.

Один из путей увеличения яркости люминофорных светодиодов при сохранении или даже снижении их стоимости - увеличение тока через полупроводниковый чип без увеличения его размеров - увеличение плотности тока . Такой метод связан с одновременным повышением требований к качеству самого чипа и к качеству теплоотвода. С увеличением плотности тока, электрические поля в объеме активной области снижают световой выход . При достижении предельных токов, поскольку участки светодиодного чипа с различной концентрацией примеси и разной шириной запрещённой зоны проводят ток по-разному , происходит локальный перегрев участков чипа, что влияет на световой выход и долговечность светодиода в целом. В целях увеличения выходной мощности при сохранении качества спектральных характеристик, теплового режима, выпускаются светодиоды, содержащие кластеры светодиодных чипов в одном корпусе.

Одна из самых обсуждаемых тем в области технологии полихромных светодиодов - это их надёжность и долговечность. В отличие от многих других источников света, светодиод с течением времени меняет свои характеристики светового выхода (эффективности), диаграммы направленности, цветовой оттенок, но редко выходит из строя полностью. Поэтому для оценки срока полезного использования принимают, например для освещения, уровень снижения светотдачи до 70% от первоначального значения (L70) . То есть, светодиод, яркость которого в процессе эксплуатации снизалась на 30% считается вышедшим из строя. Для светодиодов, используемых в декоративной подсветке используется в качестве оценки срока жизни уровень снижения яркости 50% (L50).

Срок службы люминофорного светодиода зависит от многих параметров . Кроме качества изготовления самой светодиодной сборки (способа крепления чипа на кристаллодержателе, способа крепления токоподводящих проводников, качества и защитных свойств герметизирующих материалов), время жизни в основном зависит от особенностей самого излучающего чипа и от изменения свойств люминофора с течением наработки (деградация). Причём, как показывают многочисленные исследования, основным фактором влияния на срок службы светодиода считается температура.

Влияние температуры на срок службы светодиода

Полупроводниковый чип в процессе работы часть электрической энергии излучает в виде излучения , часть в виде тепла . При этом, в зависимости от эффективности такого преобразования, количество тепла составляет около половины для самых эффективных излучателей или более. Сам полупроводниковый материал обладает невысокой теплопроводностью , кроме того, материалы и конструкция корпуса обладают определенной неидеальной тепловой проводимостью, что приводит к разогреву чипа до высоких (для полупроводниковой структуры) температур. Современные светодиоды работают при температурах чипа в районе 70-80 градусов. И дальнейшее увеличение этой температуры при использовании нитрида галлия, недопустимо. Высокая температура приводит к увеличению количества дефектов в активном слое, приводит к повышенной диффузии , изменению оптических свойств подложки. Всё это приводит к увеличению процента безизлучательной рекомбинации и поглощению фотонов материалом чипа. Увеличение мощности и долговечности достигается усовершенствованием как самой полупроводниковой структуры (снижение локального перегрева), так и развитием конструкции светодиодной сборки, улучшением качества охлаждения активной области чипа. Также, проводятся исследования с другими полупроводниковыми материалами или подложками .

Люминофор также подвержен действию высокой температуры. При длительном воздействии температуры переизлучательные центры ингибируются и коэффициент преобразования, а также спектральные характеристики люминофора ухудшаются. В первых и некоторых современных конструкциях полихромных светодиодов люминофор наносится прямо на полупроводниковый материал и тепловое воздействие максимально. Кроме мер по снижению температуры излучающего чипа, производители используют различные способы снижения влияния температуры чипа на люминофор. Технологии изолированного люминофора и конструкции светодиодных ламп, в которых люминофор физически отделен от излучателя позволяют увеличить срок службы источника света.

Корпус светодиода, изготавливаемый из оптически прозрачной кремнийорганической пластмассы или эпоксидной смолы, подвержен старению под воздействием температуры и со временем начинает тускнеть и желтеть, поглощая часть излучаемой светодиодом энергии. Отражающие поверхности также портятся при нагреве - вступают во взаимодействие с другими элементами корпуса, подвержены коррозии. Все эти факторы в совокупности приводят к тому, что яркость и качество излучаемого света постепенно снижается. Однако, этот процесс можно успешно замедлить, обеспечивая эффективный теплоотвод.

Конструкция люминофорных светодиодов

Схема одной из конструкций белого светодиода. MPCB - печатная плата с высокой тепловой проводимостью.

Современный люминофорный светодиод - это сложное устройство, объединяющее много оригинальных и уникальных технических решений. Светодиод имеет несколько основных элементов, каждый из которых выполняет важную, зачастую не одну функцию :

Все элементы конструкции светодиода испытывают тепловые нагрузки и должны быть подобраны с учетом степени их теплового расширения. И немаловажным условием хорошей конструкции является технологичность и низкая стоимость сборки светодиодного прибора и монтажа его в светильник.

Яркость и качество света

Самым важным параметром считается даже не яркость светодиода, а его cветовая отдача , то есть световой выход с каждого Ватта потреблённой светодиодом электрической энергии. Световая отдача современных светодиодов достигает 150-170 лм/Вт. Теоретический предел технологии оценивается в 260-300 лм/Вт . При оценке необходимо учитывать, что эффективность светильника на базе светодиодов существенно ниже за счет КПД источника питания, оптических свойств рассеивателя, отражателя и других элементов конструкции. Кроме того, производители зачастую указывают начальную эффективность излучателя при нормальной температуре. Тогда как температура чипа в процессе работы значительно выше. Это приводит к тому, что реальная эффективность излучателя ниже на 5 - 7%, а светильника зачастую - вдвое.

Второй не менее важный параметр - качество производимого светодиодом света. Для оценки качества цветопередачи существует три параметра:

Люминофорный светодиод на базе ультрафиолетового излучателя

Кроме уже ставшего распространённым варианта комбинации голубого светодиода и ИАГ, развивается также конструкция на базе ультрафиолетового светодиода. Полупроводниковый материал, способный излучать в близкой ультрафиолетовой области , покрывают несколькими слоями люминофора на базе европия и сульфида цинка, активированного медью и алюминием. Такая смесь люминофоров дает максимумы переизлучения в районе зелёной, синей и красной областей спектра. Полученный белый свет обладает весьма хорошими характеристиками качества, однако эффективность такого преобразования пока невелика.

Достоинства и недостатки люминофорных светодиодов

Учитывая высокую стоимость светодиодных источников освещения по сравнению с традиционными лампами, необходимы веские причины для использования таких устройств :

  • Основное преимущество белых светодиодов - высокий КПД. Низкое удельное энергопотребление позволяет применять их в длительно работающих источниках автономного и аварийного освещения .
  • Высокая надежность и длительный срок службы позволяют говорить о возможной экономии на замене ламп. Кроме того, использование светодиодных источников света в труднодоступных местах и уличных условиях позволяет снизить затраты на обслуживание. В совокупности с высокой эффективностью, можно сказать о существенной экономии средств при использовании светодиодного освещения в некоторых применениях.
  • Малый вес и размер устройств. Светодиоды отличаются малыми габаритами и пригодны для использования в труднодоступных местах и малогабаритных переносных устройствах.
  • Отсутствие ультрафиолетового и инфракрасного излучения в спектре позволяет использовать светодиодное освещение без вреда для человека и в специальных целях (например для освещения раритетных книг или других подверженных влиянию света предметов).
  • Отличная работа при отрицательных температурах без снижения, а зачастую и с улучшением параметров. Большинство типов светодиодов показывают бо́льшую эффективность и долговечность при снижении температуры, однако устройства питания, управления и элементы конструкции могут иметь противоположную зависимость.
  • Светодиоды - безинерционные источники света, они не требуют времни на прогрев или выключение, как например люминесцентные лампы и количество циклов включения и выключения не оказывает негативного влияния на их надежность.
  • Хорошая механическая прочность позволяет использовать светодиоды в тяжёлых условиях эксплуатации.
  • Легкость регулирования мощности как скважностью , так и регулированием тока питания без снижения параметров эффективности и надёжности.
  • Безопасность использования, нет опасности поражения электрическим током за счет низкого питающего напряжения.
  • Низкая пожароопасность, возможность использования в условиях взрывоопасности и опасности возгорания за счет отсутствия накальных элементов.
  • Влагостойкость, стойкость к воздействию агрессивных сред.
  • Химическая нейтральность, отсутствие вредных выбросов и отсутствие специальных требований к процедурам утилизации.

Но есть и недостатки:

Светодиоды освещения обладают также особенностями, присущими всем полупроводниковым излучателям, учитывая которые, можно найти наиболее удачное применение, например направленность излучения. Светодиод светит только в одну сторону без применения дополнительных отражателей и рассеивателей. Светодиодные светильники наилучшим образом подходят для местного и направленного освещения.

Перспективы развития технологии белых светодиодов

Технологии изготовления светодиодов белого цвета, пригодных для целей освещения находятся в стадии активного развития. Исследования в этой области стимулируются повышенным интересом со стороны общества. Перспективы значительной экономии энергии привлекают инвестиции в сферу изучения процессов, развития технологии и поиска новых материалов. Судя по публикациям производителей светодиодов и сопутствующих материалов, специалистов в области полупроводников и светотехники, можно обозначить пути развития в этой области:

См. также

Примечания

  1. , p. 19-20
  2. Светодиоды MC-E компании Cree, содержащие красный, зелёный, голубой и белый излучатели (англ.) . LED Professional. Архивировано
  3. Светодиоды VLMx51 компании Vishay, содержащие красный, оранжевый, жёлтый и белый излучатели (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  4. Многоцветные светодиоды XB-D и XM-L компании Cree (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  5. Светодиоды XP-C компании Cree, содержащие шесть монохроматических излучателей (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  6. Никифоров С. «S-класс» полупроводниковой светотехники // Компоненты и технологии : журнал. - 2009. - № 6. - С. 88-91.
  7. Трусон П. Халвардсон Э. Преимущества RGB-светодиодов для осветительных приборов // Компоненты и технологии : журнал. - 2007. - № 2.
  8. , p. 404
  9. Никифоров С. Температура в жизни и работе светодиодов // Компоненты и технологии : журнал. - 2005. - № 9.
  10. Светодиоды для интерьерной и архитектурной подсветки (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  11. Сян Лин Ун (Siang Ling Oon) Светодиодные решения для систем архитектурной подсветки // : журнал. - 2010. - № 5. - С. 18-20.
  12. Светодиоды RGB для использования в электронных табло (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  13. Туркин А. Нитрид галлия как один из перспективных материалов в современной оптоэлектронике // Компоненты и технологии : журнал. - 2011. - № 5.
  14. Светодиоды с высокими значениями CRI (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  15. Технология EasyWhite компании Cree (англ.) . LEDs Magazine. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  16. Никифоров С., Архипов А. Особенности определения квантового выхода светодиодов на основе AlGaInN и AlGaInP при различной плотности тока через излучающий кристалл // Компоненты и технологии : журнал. - 2008. - № 1.
  17. Никифоров С. Теперь электроны можно увидеть: светодиоды делают электрический ток очень заметным // Компоненты и технологии : журнал. - 2006. - № 3.
  18. Светодиоды с матричным расположением большого количества полупроводниковых чипов (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  19. Срок службы белых светодиодов Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  20. Виды дефектов LED и методы анализа (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  21. , p. 61, 77-79
  22. Светодиоды компании SemiLEDs (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  23. GaN-on-Si Программа исследований светодиодов на кремниевой основе (англ.) . LED Professional. Проверено 10 ноября 2012.
  24. Технология изолированного люминофора компании Cree (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  25. Туркин А. Полупроводниковые светодиоды: история, факты, перспективы // Полупроводниковая светотехника : журнал. - 2011. - № 5. - С. 28-33.
  26. Иванов А. В., Фёдоров А. В., Семёнов С. М. Энергосберегающие светильники на основе высокоярких светодиодов // Энергообеспечение и энергосбережение – региональный аспект : XII Всероссийское совещание: материалы докладов. - Томск: СПБ Графикс, 2011. - С. 74-77.
  27. , p. 424
  28. Белые светодиоды с высоким световым выходом для нужд освещения (англ.) . Phys.Org™. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  29. Основы светодиодного освещения (англ.) . U.S. Department of Energy. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  30. Шаракшанэ А. Шкалы оценки качества спектрального состава света - CRI и CQS // Полупроводниковая светотехника : журнал. - 2011. - № 4.
  31. Ультрафиолетовые светодиоды SemiLED с длиной волны 390-420 нм. (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  32. , p. 4-5
  33. Системы активного охлаждения кампании Nuventix (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  34. Н.П.Сощин Современные фотолюминофоры для эффективных приборов твердотельного освещения. Материалы конференции. (рус.) (february 1, 2010). Архивировано
  35. О.Е.Дудукало, В.А.Воробьев (рус.) (may 31, 2011). Архивировано из первоисточника 27 октября 2012.
  36. Тесты ускоренной температурной деградации люминофоров (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  37. Research and Markets Releases New 2012 Report on LED Phosphor Materials (англ.) . LED Professional. Архивировано из первоисточника 10 декабря 2012. Проверено 30 ноября 2012.
  38. Intematix представил набор люминофоров для качественной цветопередачи (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  39. Lumi-tech предложил SSE люминофор для белых светодиодов (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  40. Красный фосфор от компании Intematix (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  41. Светодиоды на квантовых точках (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  42. Прототип красного всетодиода с длиной волны 609 нм компании Osram с эффективностью 61 % (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  43. Переход на структуру GaN-on-Si (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  44. Tim Whitaker Joint venture to make ZnSe white LEDs (англ.) (December 6, 2002). Архивировано из первоисточника 27 октября 2012. Проверено 10 ноября 2012.
  45. , p. 426

Литература

  • Шуберт Ф.Е. Светодиоды. - М .: Физматлит, 2008. - 496 с. - ISBN 978-5-9221-0851-5
  • Вейнерт Д. Светодиодное освещение: Справочник . - Philips, 2010. - 156 с. - ISBN 978-0-615-36061-4

Ссылки

  • Сайт департамента энергетики США о светодиодном освещении
  • Led Professional. Научно-технический журнал о светодиодах и светодиодном освещении, Австрия
  • LEDs Magazine. Научно-технический журнал о светодиодах и светодиодном освещении. США
  • Полупроводниковая светотехника. Российский журнал о светодиодах и светодиодном освещении