Узип — устройство защиты от импульсных перенапряжений. Ограничитель импульсных перенапряжений и схема установки разрядника Ограничитель импульсных перенапряжений оин 1 схема подключения

Здесь привожу несколько типовых схем подключения устройств защиты от импульсных перенапряжений (УЗИП). Ниже вы найдете однофазные и трехфазные схемы для разных систем заземления: TN-C, TN-S и TN-C-S. Они наглядные и понятные для простого человека.

Сегодня существует большое количество производителей УЗИП. Сами устройства бывают разных моделей, характеристик и конструкций. Поэтому перед его монтажом обязательно изучите паспорт и схему подключения. В принципе, суть подключения у всех УЗИП одинаковая, но все же рекомендую сначала прочитать инструкцию.

Во всех выложенных схемах присутствуют УЗО и групповые автоматические выключатели . Их я указал для наглядности и полноты распределительного щитка. Эта "начинка" щитка у вас может быть совсем другая.

1. Схема подключения УЗИП в однофазной сети системы заземления TN-S.

На данной схеме представлен УЗИП серии Easy9 производителя Schneider Electric. К нему подключаются следующие проводники: фазный, нулевой рабочий и нулевой защитный. Здесь он устанавливается сразу после вводного автомата. Все контакты на любом УЗИП обозначены. Поэтому куда подключать "фазу", а куда "ноль" можно легко определить. Зеленый флажок на корпусе указывает на исправное состояние, а красный флажок сигнализирует о неисправной касете.

Представленное устройство относится к классу 2. Оно одно самостоятельно не способно защитить от прямого удара молнии. Грамотный выбор УЗИП это сложная и уже отдельная тема.

Думаю тут все понятно...

Ниже представлена аналогичная схема подключения УЗИП, но уже без электросчетчика и с использованием общего УЗО.

2. Схема подключения УЗИП в трехфазной сети системы заземления TN-S.

На схеме также изображен УЗИП производителя Schneider Electric серии Easy9, но уже для 3-х фазной сети. На рисунке изображено 4-х полюсное устройство с подключением нулевого рабочего проводника.

Еще существует 3-х полюсное УЗИП этой же серии. Оно применяется в системе заземления TN-C. В нем нет контакта для подключения нулевого рабочего проводника.

3. Схема подключения УЗИП в трехфазной сети системы заземления TN-C.

Здесь изображен УЗИП фирмы IEK. Данная схема представляет собой обычный вводной щит для частного дома. Он состоит из вводного автомата, электросчетчика, УЗИП и общего противопожарного УЗО. Также на схеме показан переход с системы заземления TN-C на TN-C-S, что требуется современными нормами.

На первом рисунке изображен 4-х полюсный вводной автомат, а на втором 3-х полюсный.

Выше представлены наглядные схемы подключения УЗИП. Думаю они понятны вам. Если остались вопросы, то жду их в комментариях.

Улыбнемся:

Нет постояннее соединения, чем временная скрутка!

Ограничитель перенапряжений это часто недооцениваемый, но очень важный элемент . Этот элемент рекомендован к установке производителями электрооборудования, в то время как среди самих электриков мнения разделены. Давайте разберёмся с этим делом. Наиболее частые вопросы про ограничитель выглядит следующим образом: Каковы классы разрядников? Из чего он состоит и как работает? Как подключить ограничитель перенапряжений? Действительно ли он защищает электрические устройства?

Классы защиты ограничителей

В области напряжения ниже 1000 В ограничители делятся на 4 класса, обозначенные буквами алфавита: A, B, C и D.

  1. Ограничитель класса А не используется в бытовых установках, а применяется для защиты линий электропередач.
  2. Протектор класса B используется для защиты от высоковольтовых скачков напряжения, например, вызванных ударом молнии к линии электропередач.
  3. Ограничитель класса C предназначен для защиты от перенапряжений со слегка более низкими значениями напряжения в сети. Защитные устройства класса B и C обычно устанавливаются в бытовых распределительных устройствах.
  4. Протектор класса D используется для прямой защиты выбранных электроустройств, чувствительных к импульсным помехам и всплескам в 220 В сети. Он монтируется в распределительном щите, за розеткой в электрической коробке или непосредственно в защищаемом устройстве.

Каждое устройство защиты ограничивает электрический потенциал только определенным уровнем. Чем ближе оборудование к А классу — тем более высокая мощность. Например:

  • Класс A уменьшит уровень напряжения до 6 кВ,
  • Класс B уменьшит уровень напряжения до 2,5 кВ,
  • Класс C уменьшит уровень напряжения до 1,5 кВ,
  • Класс D уменьшит уровень напряжения до 0,8 кВ.

Поэтому ограничители отдельных классов следует применять каскадно, постепенно снижая уровень предельного напряжения. То есть если одно распределительное устройство в доме — используем защитные устройства класса как B, так и C (есть сразу 2 в 1 защитные устройства B + C).

Если здание многоэтажное, в главном распределительном щитке должны использоваться защитные устройства класса B, а ограничители класса C следует использовать в распределительных щитках в отдельных квартирах.

Если подключенное к розетке устройство чувствительно к скачкам напряжения, можем также использовать ограничители класса D. К ограничителям класса А у нас нет доступа, это забота энергетической компании.

Поскольку рассматривать будем домашнюю проводку, статья будет посвящена защитным устройствам класса B и класса C (типа I и II).

Обозначение на принципиальных схемах

Основные символы, используемые при обозначении разрядников перенапряжения, следующие:

  1. Общее обозначение разрядника
  2. Разрядник трубчатый
  3. Разрядник вентильный и магнитовентильный

Установка ограничителя перенапряжений

Стандартный разрядник B или C (возможно, B + C) состоит из двух компонентов:

  1. Основа ограничителя
  2. Сменная вставка с защитным элементом

Основа

Основание защитного устройства установлено на DIN-рейке TS35. Оно имеет два хомута. Подключите провод фазы (L) или нейтральный (N) на котором может появиться слишком большой электрический потенциал. С другой стороны подсоедините защитный провод PE, который подключен к защитной линии распределительного устройства.

Защитный проводник должен иметь минимальное поперечное сечение 4 мм2, но не повредит взять ещё больше. В конце концов есть вероятность, что будет течь очень высокий ток.

Есть 3 контакта под терминалом PE. По стандарту в комплект входит вилка, которая вставлена в нужное место и позволяет соединять провода. Благодаря этим зажимам есть возможность удаленного уведомления в случае повреждения вставки или ее перегорания. Этот сигнал может быть подключен, например, к входу блока управления сигнализацией (смотрите схему). В этом случае панель управления будет проинформирована о повреждении вставки размыканием электрической цепи между красным и зеленым проводами.

Вставка

Вставка содержит все наиболее важные элементы, благодаря которым защитник правильно функционирует:

  • Класс B (тип I) — основным элементом является просто искровой промежуток.
  • Класс C (тип II) — здесь деталь варистор является основным элементом.

Как работает защитник от перенапряжений

Защитой обеспечиваются устройства, питаемые от шнуров сети 220V, подключенных к разряднику в распределительной коробке. Это касается как фазных, так и нейтральных проводников (в зависимости от выбранного типа защиты).

Общее правило заключается в том, что на одной стороне защитного устройства соединяем фазные проводники и, возможно, нейтральный проводник, а с другой стороны — защитный провод.

Когда напряжение в системе в норме, сопротивление между проводами очень велико, порядка нескольких ГигаОм. Благодаря этому ток не течет через разрядник.

Когда происходит скачок напряжения в сети, ток начинает протекать через ограничитель на землю.

В защитных устройствах класса B основным элементом является искровой промежуток . При нормальной работе сопротивление его очень велико. В случае искрового промежутка это сопротивление является гигантским, поскольку искровой промежуток это фактически разрыв цепи. Когда молния ударяет в элемент электрической установки напрямую, сопротивление искрового промежутка падает почти до нуля благодаря электрической дуге. Из-за появления очень большого электрического потенциала в искровом промежутке между ранее разделенными элементами создается электрическая дуга.

Благодаря этому, например, фазовый провод, в котором имеется большой всплеск напряжения и защитный провод, создают короткое замыкание и большой ток протекает прямо на землю, минуя внутреннюю электрическую установку. После разряда искровой промежуток возвращается в нормальное состояние — то есть разрывает цепь.

Ограничитель класса C имеет внутри варистор . Варистор представляет собой специфический резистор, который обладает очень высоким сопротивлением при низком электрическом потенциале. Если в системе происходит скачок напряжения из-за разряда, его сопротивление быстро уменьшается вызывая протекание тока на землю и аналогичную ситуацию, как в случае искрового промежутка.

Разница между классом B и классом C заключается в том, что последний способен ограничивать всплески напряжения с меньшим потенциалом, чем прямой удар молнии. Недостатком этого решения является довольно быстрый износ варисторов.

Главным в ограничителях перенапряжений, независимо от используемого класса, является установка заземления с очень хорошими параметрами, то есть с очень низким электрическим сопротивлением. Если это сопротивление слишком велико — ток перенапряжения (вызванный ударом молнии) вместо протектора может протекать через электрическую систему и оставить на пути сгоревшее оборудование, включенное в данный момент к розеткам 220 вольт.

Схема подключения ограничителя к сети

Как подключить ограничитель к домашнему щитку? Начнем с основ. У нас есть однофазная сеть и одномодульный разрядник. Мы хотим защитить им фазовый провод. Тип сети — TN-S.

Подключаем фазный проводник питания непосредственно к разряднику и подключаем разрядник с другой стороны к клеммной колодке PE.

Но в этом домашнем коммутаторе больше ничего, кроме импульсного ограничителя. Добавим недостающие элементы.

Как видите, установка ограничителя перенапряжений не влияет на дальнейшую организацию компонентов в домашнем коммутационном щитке. Соединение устройства остаточного тока и автоматических выключателей осуществляется так же.

Вообще в распределительных устройствах разрядники перенапряжения класса B, C или B + C устанавливаются перед автоматическим выключателем (или автоматическими выключателями) и предохранителями токовой защиты. Но ограничитель является первым элементом, лежащим в основе защиты дома или квартиры.

Трехфазная установка

В трехфазной схеме увеличивается ширина ограничителя и количество защищаемых соединений. Однако принцип функционирования ограничителя остается неизменным. Наиболее часто используемые трехслойные системные защитные устройства, работающие в системе 4 + 0, что означает присоединение к разряднику следующих линий:

  • 3-фазные провода
  • 1 нейтральный провод

Каждый из проводов подлежащих защите имеет равные права, то есть возможные перенапряжения устраняются путем подачи тока на защитную установку и, как результат, на землю.

Конечно для установок TN-C (установка без отдельного защитного провода) можно приобрести защитные устройства только с 3 защищаемыми разъемами. Затем с нижней стороны подключите ограничитель к полосе PEN (нейтральная защита).

Безопасность и эффективность ограничителя

В бытовых установках это не часто практикуется, потому что защита от короткого замыкания существует в виде прерывателя или предохранителя, а его малый номинальный ток безопасно защищает сеть от сбоев.

Параметры ограничителя перенапряжений

Перед тем как пойти в магазин и купить это устройство, нужно знать следующее:

  1. Количество модулей (терминалов) — зависит от типа вашей сети. 1 модуль можно купить когда есть однофазная система TN-C. 3 модуля, когда установка находится в сети TN-C трехфазной и 4 модуля когда сеть является трехфазной в TN-S или TT.
  2. Класс (тип) — можно выбирать между классами B, C или B + C. Если не уверены что перед вашей квартирой используется ограничитель типа B, стоит выбрать решение B + C. В противном случае ограничителя типа C будет достаточно.
  3. Номинальное напряжение, в котором работает ограничитель.
  4. Uc — рабочее напряжение протектора, то есть максимальный уровень напряжения который приведет к срабатыванию.
  5. In — номинальный ток ограничителя, то есть какой ток в случае короткого замыкания может протекать через разрядник.
  6. Imax — ток, который разрядник способен принимать во время атмосферного разряда. Обратите внимание, что оба значения (In = 30 000A и Imax = 60 000A) будут относительно большими по отношению к току при нормальной работе приборов в доме.
  7. Up — напряжение до которого уменьшается в случае разрыва. Например если потенциал достигает напряжения 10 000 В в случае всплеска — итоговое значение снижается до 150.

Стоит ли применять ограничитель в сети

Каждый электрик размышляет стоит ли вообще покупать разрядник. Ведь это не самый дешевый элемент электромонтажа. Теоретически, во время ремонта или строительства проводки с нуля в квартире или доме расходы 3000 рублей (в случае 4-модульного протектора) — капля в океане расходов. На практике у защитного блока не всегда будет возможность доказать, что он нужен. Даже если он сработает, снижение напряжения может не всегда защитить чувствительные электронные устройства (лучше обстоит дело с защитой класса D).

Для всех нас стало нормой, что в распределительных щитках жилых домов, обязательна установка вводных автоматических выключателей, модульных автоматов отходящих цепей, УЗО или дифф.автоматов на помещения и оборудование, где критичны возможные утечки токов (ванные комнаты, варочная панель, стиральная машинка, бойлер).

Помимо этих обязательных коммутационных аппаратов, практически никому не требуется объяснять, зачем еще нужно реле контроля напряжения.

УЗИП или реле напряжения

Устанавливать их начали все и везде. Грубо говоря оно защищает вас от того, чтобы в дом не пошло 380В вместо 220В. При этом не нужно думать, что повышенное напряжение попадает в проводку по причине недобросовестного электрика.

Вполне возможны природные явления, не зависящие от квалификации электромонтеров. Банально упало дерево и оборвало нулевой провод.

Также не забывайте, что любая ВЛ устаревает. И даже то, что к вашему дому подвели новую линию СИПом, а в доме у вас смонтировано все по правилам, не дает гарантии что все хорошо на самой питающей трансформаторной подстанции – КТП.

Там также может окислиться ноль на шинке или отгореть контакт на шпильке трансформатора. Никто от этого не застрахован.

Именно поэтому все новые электрощитки уже не собираются без УЗМ или РН различных модификаций.

Что же касается устройств для защиты от импульсных перенапряжений, или сокращенно УЗИП, то у большинства здесь появляются сомнения в необходимости их приобретения. А действительно ли они так нужны, и можно ли обойтись без них?

Подобные устройства появились достаточно давно, но до сих пор массово их устанавливать никто не спешит. Мало кто из рядовых потребителей понимает зачем они вообще нужны.

Первый вопрос, который у них возникает: ”Я же поставил реле напряжения от скачков, зачем мне еще какой-то УЗИП?”


Никакое реле напряжения от этого не спасет, а скорее всего сгорит вместе со всем другим оборудованием. В то же самое время и УЗИП не защищает от малых перепадов в десятки вольт и даже в сотню.

Например устройства для монтажа в домашних щитках, собранные на варисторах, могут сработать только при достижении переменки до значений свыше 430 вольт.

Поэтому оба устройства РН и УЗИП дополняют друг друга.

Защита дома от грозы

Гроза это стихийное явление и просчитать его до сих пор не особо получается. При этом молнии вовсе не обязательно попадать прямо в линию электропередач. Достаточно ударить рядышком с ней.

Даже такой грозовой разряд вызывает повышение напряжения в сети до нескольких киловольт. Кроме выхода из строя оборудования это еще чревато и развитием пожара.

Даже когда молния ударяет относительно далеко от ВЛ, в сетях возникают импульсные скачки, которые выводят из строя электронные компоненты домашней техники. Современный электронный счетчик с его начинкой, тоже может пострадать от этого импульса.

Общая длина проводов и кабелей в частном доме или коттедже достигает нескольких километров.

Сюда входят как силовые цепи так и слаботочка:




  • охранная сигнализация

Все эти провода принимают на себя последствия грозового удара. То есть, все ваши километры проводки получают гигантскую наводку, от которой не спасет никакое реле напряжения.

Единственное что поможет и защитит всю аппаратуру, стоимостью несколько сотен тысяч, это маленькая коробочка называемая УЗИП.

Монтируют их преимущественно в коттеджах, а не в квартирах многоэтажек, где подводка в дом выполнена подземным кабелем. Однако не забывайте, что если ваше ТП питается не по кабельной линии 6-10кв, а воздушной ВЛ или ВЛЗ (СИП-3), то влияние грозы на среднем напряжении, также может отразиться и на стороне 0,4кв.

Поэтому не удивляйтесь, когда в грозу в вашей многоэтажке, у многих соседей одновременно выходят из строя WiFi роутеры, радиотелефоны, телевизоры и другая электронная аппаратура.

Молния может ударить в ЛЭП за несколько километров от вашего дома, а импульс все равно прилетит к вам в розетку. Поэтому не смотря на их стоимость, задуматься о покупке УЗИП нужно всем потребителям электричества.

Цена качественных моделей от Шнайдер Электрик или ABB составляет примерно 2-5% от общей стоимости черновой электрики и средней комплектации распредщитка. В общей сумме это вовсе не такие огромные деньги.

Классы УЗИП

На сегодняшний день все устройства от импульсных перенапряжений делятся на три класса. И каждый из них выполняет свою роль.

Модуль первого класса гасит основной импульс, он устанавливается на главном вводном щите.

После погашения самого большого перенапряжения, остаточный импульс принимает на себя УЗИП 2 класса. Он монтируется в распределительном щитке дома.

Если у вас не будет устройства I класса, высока вероятность что весь удар воспримет на себя модуль II. А это может для него весьма печально закончится.

Поэтому некоторые электрики даже отговаривают заказчиков ставить импульсную защиту. Мотивируя это тем, что раз вы не можете обеспечить первый уровень, то не стоит вообще на это тратить денег. Толку не будет.

Однако давайте посмотрим, что говорит об этом не знакомый электрик, а ведущая фирма по системам грозозащиты Citel:

То есть в тексте прямо сказано, класс II монтируется либо после класса 1, либо КАК САМОСТОЯТЕЛЬНОЕ УСТРОЙСТВО .

Третий модуль защищает уже непосредственно конкретного потребителя.

Если у вас нет желания выстраивать всю эту трехступенчатую защиту, приобретайте УЗИП, которые изначально идут с расчетом работы в трех зонах 1+2+3 или 2+3.

Такие модели тоже выпускаются. И будут наиболее универсальным решением для применения в частных домах. Однако стоимость их конечно отпугнет многих.

Схема электрощита с УЗИП

Схема качественно укомплектованного с точки зрения защиты от всех скачков и перепадов напряжения распределительного щита, должна выглядеть примерно следующим образом.

На вводе перед счетчиком - вводной автоматический выключатель, защищающий прибор учета и цепи внутри самого щитка. Далее счетчик.

Между счетчиком и вводным автоматом - УЗИП со своей защитой. Электроснабжающая организация конечно может запретить такой монтаж. Но вы можете обосновать это необходимостью защиты от перенапряжения и самого счетчика.

В этом случае потребуется смонтировать всю схемку с аппаратами в отдельном боксе под пломбой, дабы предотвратить свободный доступ к оголенным токоведущим частям до прибора учета.

Однако здесь остро встанет вопрос замены сработавшего модуля и срыва пломб. Поэтому согласовывайте все эти моменты заранее.

После прибора учета находятся:

  • реле напряжения УЗМ-51 или аналог



  • простые модульные автоматы

Если с привычными компонентами при комплектации такого щитка вопросов не возникает, то на что же нужно обратить внимание при выборе УЗИП?

На температуру эксплуатации. Большинство электронных видов рассчитано на работу при окружающей температуре до -25С. Поэтому монтировать их в уличных щитках не рекомендуется.

Второй важный момент это схемы подключения. Производители могут выпускать разные модели для применения в различных системах заземления.

Например, использовать одни и те же УЗИП для систем TN-C или TT и TN-S уже не получится. Корректной работы от таких устройств вы не добьетесь.

Схемы подключения

Вот основные схемы подключения УЗИП в зависимости от исполнения систем заземления на примере моделей от Schneider Electric. Схема подключения однофазного УЗИП в системе TT или TN-S:

Здесь самое главное не перепутать место подключения вставного картриджа N-PE. Если воткнете его на фазу, создадите короткое замыкание.

Схема трехфазного УЗИП в системе TT или TN-S:

Схема подключения 3-х фазного устройства в системе TN-C:

На что нужно обратить внимание? Помимо правильного подключения нулевого и фазного проводников немаловажную роль играет длина этих самых проводов.

От точки подключения в клемме устройства до заземляющей шинки, суммарная длина проводников должны быть не более 50см!

А вот подобные схемы для УЗИП от ABB OVR. Однофазный вариант:

Трехфазная схема:

Давайте пройдемся по некоторым схемкам отдельно. В схеме TN-C, где мы имеем совмещенные защитный и нулевой проводники, наиболее распространенный вариант решения защиты – установка УЗИП между фазой и землей.

Каждая фаза подключается через самостоятельное устройство и срабатывает независимо от других.

В варианте сети TN-S, где уже произошло разделение нейтрального и защитного проводника, схема похожа, однако здесь монтируется еще дополнительный модуль между нулем и землей. Фактически на него и сваливается весь основной удар.

Именно поэтому при выборе и подключении варианта УЗИП N-PE, указываются отдельные характеристики по импульсному току. И они обычно больше, чем значения по фазному.
Помимо этого не забывайте, что защита от грозы это не только правильно подобранный УЗИП. Это целый комплекс мероприятий.

Их можно использовать как с применением молниезащиты на крыше дома, так и без нее.

Особое внимание стоит уделить качественному контуру заземления.
Одного уголка или штыря забитого в землю на глубину 2 метра здесь будет явно не достаточно. Хорошее сопротивление заземления должно составлять 4 Ом.

Принцип действия

Принцип действия УЗИП основан на ослаблении скачка напряжения до значения, которое выдерживают подключенные к сети приборы. Другими словами, данное устройство еще на вводе в дом сбрасывает излишки напряжения на контур заземления, тем самым спасая от губительного импульса дорогостоящее оборудование.

Определить состояние устройства защиты достаточно просто:

  • зеленый индикатор – модуль рабочий


При этом не включайте в работу модуль с красным флажком. Если нет запасного, то лучше его вообще демонтировать.

УЗИП это не всегда одноразовое устройство, как некоторым кажется. В отдельных случаях модели 2,3 класса могут срабатывать до 20 раз!

Автоматы или предохранители перед УЗИП

Чтобы сохранить в доме бесперебойное электроснабжение, необходимо также установить автоматический выключатель, который будет отключать узип. Установка этого автомата обусловлена также тем, что в момент отвода импульса, возникает так называемый сопровождающий ток.

Он не всегда дает возможность варисторному модулю вернуться в закрытое положение. Фактически тот не восстанавливается после срабатывания, как по идее должен был.

В итоге, дуга внутри устройства поддерживается и приводит к короткому замыканию и разрушениям. В том числе самого устройства.

Автомат же при таком пробое срабатывает и обесточивает защитный модуль. Бесперебойное электроснабжение дома продолжается.

Запомните, что этот автомат защищает в первую очередь не разрядник, а именно вашу сеть.

При этом многие специалисты рекомендуют ставить в качестве такой защиты даже не автомат, а модульные предохранители.

Объясняется это тем, что сам автомат во время пробоя оказывается под воздействием импульсного тока. И его электромагнитные расцепители также будут под повышенным напряжением.

Это может привести к пробою отключающей катушки, подгоранию контактов и даже выходу из строя всей защиты. Фактически вы окажетесь безоружны перед возникшим КЗ.




Поэтому устанавливать УЗИП после автомата, гораздо хуже, чем после предохранителей.

Есть конечно специальные автоматические выключатели без катушек индуктивности, имеющие в своей конструкции только терморасцепители. Например Tmax XT или Formula A.

Однако рассматривать такой вариант для коттеджей не совсем рационально. Гораздо проще найти и купить модульные предохранители. При этом можно сделать выбор в пользу типа GG.

Они способны защищать во всем диапазоне сверхтоков относительно номинального. То есть, если ток вырос незначительно, GG его все равно отключит в заданный интервал времени.

Есть конечно и минус схемы с автоматом или ПК непосредственно перед УЗИП. Все мы знаем, что гроза и молния это продолжительное, а не разовое явление. И все последующие удары, могут оказаться небезопасными для вашего дома.

Защита ведь уже сработала в первый раз и автомат выбил. А вы об этом и догадываться не будете, потому как электроснабжение ваше не прерывалось.

Поэтому некоторые предпочитают ставить УЗИП сразу после вводного автомата. Чтобы при срабатывании отключалось напряжение во всем доме.

Однако и здесь есть свои подводные камни и правила. Защитный автоматический выключатель не может быть любого номинала, а выбирается согласно марки применяемого УЗИП. Вот таблица рекомендаций по выбору автоматов монтируемых перед устройствами защиты от импульсных перенапряжений:

Если вы думаете, что чем меньше по номиналу автомат будет установлен, тем надежнее будет защита, вы ошибаетесь. Импульсный ток и скачок напряжения могут быть такой величины, что они приведут к срабатыванию выключателя, еще до момента, когда УЗИП отработает.

И соответственно вы опять останетесь без защиты. Поэтому выбирайте всю защитную аппаратуру с умом и по правилам. УЗИП это тихая, но весьма своевременная защита от опасного электричества, которое включается в работу мгновенно.

Ошибки при подключении

1 Самая распространенная ошибка - это установка УЗИП в электрощитовую с плохим контуром заземления.

Толку от такой защиты не будет никакого. И первое же “удачное” попадание молнии, сожгет вам как все приборы, так и саму защиту.

2 Не правильное подключение исходя из системы заземления.

Проверяйте техдокументацию УЗИП и проконсультируйтесь с опытным электриком ответственным за электрохозяйство, который должен быть в курсе какая система заземления используется в вашем доме.

Устройство защитного отключения (УЗО) – прибор, который защищает человека от поражения током, а также предотвращает поломку электроприемников. Принцип работы устройства прост: оно сравнивает токи в фазном и нулевом проводе. Если они равны, то сеть работает в нормальном режиме и прибор не реагирует. Как только появляется разница величин, обусловленная тем, что по нулю идет меньший ток, чем фазный, что указывает на утечку, тогда прибор незамедлительно (менее чем за 0,1 сек) срабатывает, отключая электроприемник от сети.

Куда ставят однофазное УЗО

Автоматические выключатели могут не реагировать на малые токи утечки, опасные для здоровья и жизни человека, а заземление сети, хоть оберегает, но вот аппаратуру она не спасет. Поэтому и устанавливают УЗО. Смертельно опасным для человека считают ток в 0,1 А.

Ток срабатывания УЗО, т. е. разница в фазе и нуле, равен 0,03 А.

В быту применять более чувствительные УЗО не целесообразно из-за того, что устройство может часто отключать напряжение без видимых на то причин. Для того чтобы понять принцип подключения, необходимо знать, какие провода идут в квартиру.


А именно:

  1. От трансформаторной подстанции кабель тянется к дому или подъезду.
  2. В кабеле присутствует 3 фазных и 1 нулевой провод.
  3. На каждый фазный провод приходится одинаковое количество квартир, чтобы уравновесить нагрузку.
  4. Все это тянется к общему подъездному щиту, куда добавляется еще и заземляющий провод, отводящий часть тока, в случае повреждения изоляции проводов.

По стоякам на каждый этаж к распределительным щиткам тянутся фазы, нулевой провод и заземление. В щитках установлены дополнительные автоматы выключения, отключающие сеть в случае КЗ. От автоматов к каждой квартире тянется 1 фазный, нулевой и заземляющий провода. В квартире уложенная в стене проводка подсоединяется к каждой розетке и к выходам для освещения.

Установка УЗО в однофазной сети не является чем-то сложным. Прибор имеет 2 клеммы входа и 2 выхода. Во входные клеммы помещают, соответственно, фазный и нулевой, не затрагивая провод заземления. Проходящие через устройство провода выходят через выходные клеммы и тянутся непосредственно к приемнику электрической энергии. Само же устройство следует подключать после автомата выключения. Наиболее хорошо себя зарекомендовали устройства фирмы АВВ.

Нередко устройство снабжают цифровым индикатором, которое служит для наглядного контроля нормы напряжения подключенной сети. Часто для этих целей используют индикатор КИПЦ09И.

Особенности УЗО в двухпроводной сети

Двухпроводная сеть подразумевает наличие в квартире только фазы и нуля, без земли. На сегодняшний день данный вид проводки использует только в старых советских постройках или некоторых частных домах.

В двухпроводной сети возможны несколько способов, как подключить УЗО:

  1. Установка единого мощного аппарата, который, в случае неисправности отключит все электрооборудование и освещение в доме.
  2. Установка менее мощных аппаратов отдельно на розетки, либо освещение, разбитые по зонам потребление (ванная, кухня и остальные розетки в комнатах).
  3. Комплексное.

Каждый вариант обладает, как плюсами, так минусами. Первый будет стоить дешевле, т.к. приобретается 1 аппарат, но вот в случае утечки, он отключит все устройства дома, что принесет дискомфорт. Определить, какое именно оборудование вызвало отключение, будет проблематично. Вариант с несколькими устройствами защиты несколько дороже, будет занимать больше пространства в распределительном щитке. Данная схема будет более надежной и точной.

Как подключить УЗО без заземления: схема

Теперь стоит рассмотреть некоторые схематичные решения установки УЗО.

Схема, где УЗО на отдельные группы потребления (ванная, кухня, спальни, а также иногда могут делать именно на освещение), будет выглядеть так: фазный и нулевой провода после автомата выключения разделяются на питание групп потребления электроэнергии.

Каждый комплект проводов (фаза-ноль) идет на отдельную группу.

Тут и монтируют отдельное УЗО на каждую группу, пропуская провода через входные и выходные клеммы. Ставят отдельные АВ на каждую группу. Нулевые провода каждой группы выводят на нулевые шины.


Схема подключения с общим УЗО:

  1. Выходящие из общего автомата нулевой и фазный провод подсоединяют к входным клеммам мощного УЗО на 25 А.
  2. Из выходных клемм провода приходят в квартиру, где питают энергопринимающие устройства, предназначенные для включения в розетку.
  3. При поломке одного электропотребителя или неисправностях проводки, обесточены будут все устройства.

Иногда же, после автомата может устанавливаться ограничитель импульсных перенапряжений (ОИН), защищающий проводку и аппаратуру от грозовых разрядов, и наводимых коммуникационных импульсных перенапряжений. Устанавливается данное устройство между фазой или нулем и землей. В таком случае УЗО устанавливают после ОДИН, обеспечивая полную, многоступенчатую защиту не только человека, но и электроприборов и проводки.

Правила установки УЗО в частном доме без заземления

Современные постройки подлежат обязательному заземлению. Только старые постройки имеют старую модель питания от сети и заземления не имеют. Во избежание несчастных случаев. на таких участках просто необходимо УЗО. Дом может подключаться, как к 1 фазе, так и к 3. От количества фаз зависит выбор устройств защиты. УЗО в частном доме с одной фазой также могут устанавливать с вариантами – одного УЗО, нескольких устройств, отключающих различные группы.

Частный участок отличается тем, что может иметь не только домовую постройку, но и:

  • Гаража;
  • Баню;
  • Сарай.

Каждая из данных построек представляет отдельную группу энергопотребителей, ведь в них присутствует не только освещение, но и прочие части, потребляющие электроэнергию и, порой, в больших количествах, например, насос для подкачки воды в бассейн или тепловые пушки в сарае в зимний период.

На частном участке с одной фазой правильно было бы выбрать схему подключения из нескольких УЗО и автоматов выключения.

В случае же, если частный дом имеет трехфазную сеть, то для его защиты используют специальные устройства защиты. Они отсоединяют одну определенную фазу, в случае, если произошла неисправность. Остальные фазы продолжают работать в нормальном режиме. Нагрузка должна быть равномерно разбросана по фазам, во избежание перекоса напряжений.

Точная схема подключения трехфазного УЗО в однофазной сети

Такой способ является не очень рациональным, но, тем не менее, его иногда используют. Данный метод применяют при последовательном монтаже начальной однофазной сети, к которой после добавляют еще 2 электрических составляющие для общей защитной функции.


Очень важно в данном случае, чтобы фаза подключалась к тому тоководу, через который будет проводиться тестирование УЗО в состоянии работы.

Для этого прозванивают сопротивление каждой из фаз и нуля. При этом должны быть включены силовые контакты и нажата кнопка тестирования. Следует отметить, что проводить данное действие нужно на демонтированном УЗО при отсутствии напряжения.

У трехфазного УЗО, которое подключается к однофазной сети, есть 3 схемы:

  1. Фаза через Line1 – подключение идет к ней, а N через N.
  2. Фаза через Line1и Line2 подключаются параллельно, а N через N и Line3 тоже будет проходить параллельно. Возможно удвоение тока через УЗО.
  3. Фаза через Line1 и Line3 подключается последовательно, а N через Line2 и N – также последовательно. При этом подключении, чувствительность УЗО возрастет.

Благодаря тому, что контакты будут разорваны, на 2 клеммах сопротивление приравняется к бесконечности. А на одной покажется величина сопротивления резистора, который ограничивает ток. Именно к этой клемме и нужно будет подключиться.

Любое электротехническое оборудование создается для работы с определённой электрической энергией, зависящей от тока и напряжения в сети. Когда их величина становится больше запроектированной нормы, то возникает аварийный режим.

Предотвратить возможность его образования или ликвидировать разрушение электрооборудования призваны защиты. Они создаются под конкретные условия возникновения аварии.

Особенности защит домашней электропроводки от повышенного напряжения

Изоляция бытовой электрической сети рассчитывается на предельное значение напряжения чуть выше одного-полутора киловольт. Если оно возрастает больше, то через диэлектрический слой начинает проникать искровой разряд, который может перерасти в дугу, образующую пожар.

Чтобы предотвратить его развитие создают защиты, работающие по одному из двух принципов:

1. отключения электрической схемы дома или квартиры от повышенного напряжения;

2. отвода опасного потенциала перенапряжения от защищаемого участка за счет быстрого его перенаправления на контур земли.

При незначительном повышении напряжения в сети исправить положение призваны также . Но, в большинстве своем они создаются для поддержания рабочих параметров электроснабжения в ограниченном диапазоне его регулирования на входе, а не как защитное устройство. Их технические возможности ограничены.

В домашней проводке напряжение может повыситься:

1. на относительно продолжительный срок, когда происходит отгорание нуля в трехфазной схеме и потенциал нейтрали смещается в зависимости от сопротивления случайно подключенных потребителей;

2. кратковременным импульсом.

С первым видом неисправности успешно справляется реле контроля напряжения. Оно постоянно занимается мониторингом входных параметров сети и при достижении ими уровня верхней уставки отключает схему от питания до момента устранения аварии.

Причинами появления кратковременно возникающих импульсов перенапряжения могут быть две ситуации:

1. одновременное отключение нескольких мощных потребителей на питающей линии, когда трансформаторная подстанция не успевает мгновенно стабилизировать систему;

2. ударе грозового разряда молнии в электрооборудование ЛЭП, подстанции или дома.

Второй вариант развития аварии представляют наибо́льшую опасность, чем во всех предыдущих случаях. Сила тока молнии достигает огромных величин. При усредненных расчетах ее принимают в 200 кА.

Она при ударе в молниеприемник и нормальной работе молниезащиты здания протекает по молниеотводу на . В этот момент во всех рядом расположенных проводниках по закону индукции наводится ЭДС, величина которой измеряется киловольтами.

Она может появиться даже в отключенной от сети проводке и сжечь ее оборудование, включая дорогостоящие телевизоры, холодильники, компьютеры.

Молния может ударить и в питающую здание воздушную ЛЭП. В этой ситуации нормально работают разрядники линии, гася ее энергию на потенциал земли. Но полностью ликвидировать его они не способны.

Часть высоковольтного импульса по проводам подключенной схемы станет растекаться во все возможные стороны и придет на ввод жилого дома, а с него — ко всем подключенным приборам чтобы сжечь их наиболее слабые места: электродвигатели и электронные компоненты.

В итоге мы получили два варианта повреждения дорогостоящего бытового электрооборудования жилого здания при нормальном ликвидации штатными защитами последствий удара молнии в молниеприемник собственного здания или питающую ЛЭП. Напрашивается вывод: необходимо устанавливать для них автоматическую защиту от импульсных разрядов .

Виды ограничителей перенапряжения для домашней электропроводки

Ассортимент подобных защит создается для работы в разных условиях, отличается конструкцией, применяемыми материалами, технологией работы.

Принципы формирования элементной базы ОПН

При создании защит от перенапряжения учитываются технические возможности различных конструкторских решений. Для газонаполненных разрядников характерно то, что они после окончания прохождения импульса разряда поддерживают протекание дополнительного тока, близкого по величине к нагрузке короткого замыкания. Его называют сопровождающим током.

Разрядники, обеспечивающие ток сопровождения порядка 100÷400 ампер, сами могут стать источником пожара и не обеспечить защиту. Их нельзя устанавливать для защиты изоляции от пробоя между любой фазой, рабочим и защитным нулем. Модели других типов разрядников работают вполне надежно внутри сети 0,4 кВ.

В домашней проводке приоритет в защитах от перенапряжения получили варисторные устройства . При нормальных условиях эксплуатации электроустановки они создают очень маленькие токи утечек до нескольких миллиампер, а во время прохождения высоковольтного импульса напряжения максимально быстро переводятся в туннельный режим, когда способны пропускать до тысяч ампер.

Классы стойкости изоляции домашней электропроводки к импульсным перенапряжениям

Электрооборудование жилых зданий создается по четырем категориям, которые обозначаются римскими цифрами IV÷I и характеризуются предельной величиной допустимого перенапряжения в 6, 4, 2,5 и 1,5 киловольта. Под эти зоны и проектируются защиты от импульсных перенапряжений.

В технической литературе их принято называть «УЗИП» , что расшифровывается как устройство защиты от импульсного перенапряжения . Производители электрооборудования в маркетинговых целях ввели более понятное для простого населения определение — ограничители. В интернете можно встретить и другие названия.

Поэтому, чтобы не запутаться в используемой терминологии, рекомендуется обращаться к техническим характеристикам устройств, а не только к их наименованию.

Основные параметры взаимосвязи категорий стойкости изоляции с зонами опасности здания и применением для них трех классов УЗИП поможет понять приведенный ниже рисунок.

Он демонстрирует, что на участке от трансформаторной подстанции по линии электропередач до вводного щита может прийти импульс в 6 киловольт. Его величину должен снизить ограничитель перенапряжения класса I в зоне 1 до четырех кВ.

В распределительном щитке зоны 2 работает ограничитель класса II, снижая напряжение до 2,5 кВ. Внутри жилой комнаты с зоной 3 УЗИП класса III обеспечивает итоговое снижение импульса до 1,5 киловольта.

Как видим, все три класса ограничителей работают комплексно, последовательно и поочередно снижают импульс перенапряжения до допустимой для изоляции электропроводки величины.

Если хоть один из составных элементов этой цепочки защит окажется неисправным, то откажет вся система и возникнет пробой изоляции на конечном приборе. Использовать их необходимо комплексно, а в процессе эксплуатации требуется проверять исправность технического состояния хотя бы внешним осмотром.

Подбор варисторов для разных классов ограничителей перенапряжений

Производители оборудования устройства УЗИП снабжают моделями варисторов, подобранных по вольт-амперным характеристикам. Их вид и рабочие пределы показаны на соответствующем графике.

Каждому классу защиты соответствует свое напряжение и ток открытия. Устанавливать их можно только на свое место.

Принципы формирования схем включения ограничителей перенапряжения

Для защиты линии электроснабжения квартиры могут использоваться различные принципы подключения УЗИП:

1. синфазно;

2. противофазно;

3. комбинированно.

В первом случае выполняется продольный принцип защиты каждого провода от перенапряжений относительно контура земли, а во втором — поперечный между каждой парой проводов. На основе сбора статистических данных обработки неисправностей и их анализа выявлено, что возникающие противофазные импульсные перенапряжения создают бо́льшие повреждения и поэтому считаются самыми опасными.

Комбинированный способ позволяет объединять оба предшествующих метода.

Варианты схем подключения ограничителей перенапряжения для системы заземления TN-S

Схема с электронными УЗИП и разрядниками


В этой схеме УЗИП всех трех классов устраняют импульсы перенапряжений между фазами линии и рабочим нулем N по цепочкам «провод - провод». Функция снижения синфазных перенапряжений возложена на разрядники определённого класса за счет их подключения между рабочим и защитным нулем.

Этот способ позволяет гальванически разъединять PE и N между собой. Положение нейтрали трехфазной сети зависит от симметрии приложенных нагрузок по фазам. Она всегда имеет какой-то потенциал, который может быть от долей до нескольких десятков вольт.

Если в системе работают блоки питания с импульсной нагрузкой, то от них высокочастотные помехи могут передаваться по цепям уравнивания потенциалов и заземления через РЕ-проводник к чувствительным электронным приборам, мешать их работе.

Включение разрядников в этом случае уменьшает воздействие перечисленных факторов за счет лучшей гальванической развязки, чем у электронных ограничителей на варисторах.

Схемы с электронными УЗИП в классах защит I и II

В этой схеме зашита от импульсных напряжений в вводном и распределительном щитах выполняется только электронными ОПН.

Они устраняют все синфазные перенапряжения (любых проводов относительно контура земли).

В классе III работает предыдущая схема с электронным ОПН и разрядником, обеспечивая защиту (провод — провод) для оконечного потребителя.

Особенности использования различных моделей ОПН с учетом очередности работы каскадов

При эксплуатации ступеней защит от импульсного перенапряжения требуется их согласование, координация. Она осуществляется удалением ступеней по кабелю на расстояние более 10 метров.

Объясняется это требование тем, что при попадании в схему высоковольтного импульса с крутой формой волны за счет индуктивного сопротивления жил на них происходит падение напряжения. Оно сразу прикладывается к первому каскаду, вызывает его срабатывание. Если это требование не выполнять, то происходит шунтирование ступеней, когда защита работает неправильно.

По такому же принципу подключаются и последующие каскады защит.

Когда по конструктивным особенностям оборудования оно расположено близко, то в схему искусственно включают дополнительные разделительные дроссели импульсного типа, создающие цепочку задержки. Их индуктивность настраивают в пределах 6÷15 микрогенри в зависимости от типа используемого ввода электропитания в здание.

Вариант такого подключения при близком расположении вводного и распределительного щитов и удаленном монтаже оконечных потребителей показан на схеме.

Монтируя дросселя по такой системе следует учитывать их возможность надежно работать при создаваемых нагрузках, выдерживать их предельные значения.

В целях удобства обслуживания защиты от импульсного перенапряжения вместе с дроссельными устройствами могут быть помещены в отдельный защитный щиток, последовательно связывающий вводное устройство с ГРЩ дома.

Один из вариантов подобного исполнения для здания, выполненного по системе зазамления TN-C-S, показан на схеме ниже.

При таком монтаже можно все три класса ограничителей размещать в одном месте, что удобно при обслуживании. Для этого надо последовательно между ступенями защит смонтировать разделительные дроссели.

Конструктивно вводное устройство, ГРЩ и защитный щиток при таком способе монтажа схемы следует располагать как можно ближе.

Комбинированное расположение УЗИП и дросселей в одном месте — защитном щитке позволяет исключить попадание импульсов перенапряжения уже на оборудование ГРЩ, в котором выполняется разделение PEN проводника.

Подключение силовых кабелей к ГЗЩ имеет особенности: их необходимо прокладывать по кратчайшим путям, избегая совместного соприкосновения для участков защищенной схемы и без защит.

Современные производители постоянно модифицируют свои разработки УЗИП, используя встроенные импульсные разделительные дроссели. Они позволили не только располагать ступени защит на близком расстоянии по кабелю, но и объединять их в отдельном блоке.

Сейчас на рынке, с учетом реализации этого метода, появились конструкции УЗИП комбинированных классов I+II+III или I+II. Различный ассортимент моделей таких разрядников выпускает российская копания Hakel.

Они создаются под разные системы заземления здания, работают без установки дополнительных ступеней защит, но требуют выполнения определенных технических условий монтажа по длине подключаемого кабеля. В большинстве случаев он должен быть менее 5 метров.

Для нормальной работы электронного оборудования и защиты его от помех высокой частоты выпускаются различные фильтры, в которые включают УЗИП класса III. Они нуждаются в подключении к контуру заземления через РЕ проводник.

Особенности защиты сложной бытовой техники от импульсов перенапряжений

Жизнь современного человека диктует необходимость использования различных электронных устройств, обрабатывающих и передающих информацию. Они довольно чувствительны к высокочастотным помехам и импульсам, плохо работают или вообще отказывают при их появлении. Для устранения подобных сбоев используют индивидуальное заземление корпуса прибора, называемое функциональным.

Его электрически отделяют от защитного РЕ проводника. Однако, при ударе молнии в молниезащиту между заземлениями здания или линии и функциональным электронного прибора по контуру земли потечет ток разряда, вызванный приложенным высоковольтным импульсом перенапряжения.

Устранить его можно выравниванием потенциалов этих контуров за счет монтажа специального разрядника между ними, который будет выравнивать потенциалы контуров при авариях и обеспечивать гальваническую развязку в повседневных условиях эксплуатации.

На выпуске подобных разрядников также специализируется копания Hakel.

Дополнительное требование к защите ОПН от коротких замыканий

Все УЗИП включаются в схему для выравнивания потенциалов между различными ее частями в критических ситуациях. При этом необходимо учитывать, что они сами, несмотря на наличие встроенной тепловой защиты варисторов, могут быть повреждены и стать из-за этого источником короткого замыкания, перерастающего в пожар.

Защита на варисторах может отказать при длительном превышении номинального напряжения, связанного, например, с отгоранием нуля в трехфазной питающей сети. Разрядники же, в отличие от электроники, вообще не снабжаются тепловой защитой.

По этим причинам все конструкции УЗИП дополнительно защищаются предохранителями, работающими при перегрузках и коротких замыканиях. Они обладают специальной сложной конструкцией и сильно отличаются от моделей с простой плавкой вставкой.

Применение автоматических выключателей для таких ситуаций не всегда оправданно: они повреждаются от импульсов грозовых разрядов, когда происходит сваривание силовых контактов.

Используя схему защиты УЗИП предохранителями необходимо соблюдать принцип создания ее иерархии методами селективности.

Как видим, чтобы обеспечить надежную защиту домашней электропроводки от импульсных перенапряжений необходимо скрупулезно подойти к этому вопросу, проанализировать вероятность возникновения аварий в проектной схеме с учетом работающей системы заземления и под нее выбрать наиболее подходящие ограничители ОПН.