Уран элемент. Свойства, добыча, применение и цена урана

; атомный номер 92, атомная масса 238,029; металл. Природный Уран состоит из смеси трех изотопов: 238 U - 99,2739% с периодом полураспада T ½ = 4,51·10 9 лет, 235 U - 0,7024% (T ½ = 7,13·10 8 лет) и 234 U - 0,0057% (T ½ = 2,48·10 5 лет).

Из 11 искусственных радиоактивных изотопов с массовыми числами от 227 до 240 долгоживущий - 233 U (T ½ = 1 ,62·10 5 лет); он получается при нейтронном облучении тория. 238 U и 235 U являются родоначальниками двух радиоактивных рядов.

Историческая справка. Уран открыт в 1789 немецким химиком М. Г. Клапротом и назван им в честь планеты Уран, открытой В. Гершелем в 1781. В металлическом состоянии Уран получен в 1841 французским химиком Э. Пелиго при восстановлении UCl 4 металлическим калием. Первоначально Уран приписывали атомную массу 120, и только в 1871 году Д. И. Менделеев пришел к выводу, что эту величину надо удвоить.

Длительное время уран представлял интерес только для узкого круга химиков и находил ограниченное применение для производства красок и стекла. С открытием явления радиоактивности Урана в 1896 году и радия в 1898 году началась промышленного переработка урановых руд с целью извлечения и использования радия в научных исследованиях и медицине. С 1942 года, после открытия в 1939 году явления деления ядер, Уран стал основным ядерным топливом.

Распространение Урана в природе. Уран - характерный элемент для гранитного слоя и осадочной оболочки земной коры. Среднее содержание Урана в земной коре (кларк) 2,5·10 -4 % по массе, в кислых изверженных породах 3,5·10 -4 %, в глинах и сланцах 3,2·10 -4 %, в основных породах 5 ·10 -5 %, в ультраосновных породах мантии 3·10 -7 %. Уран энергично мигрирует в холодных и горячих, нейтральных и щелочных водах в форме простых и комплексных ионов, особенно в форме карбонатных комплексов. Важную роль в геохимии Урана играют окислительно-восстановительные реакции, поскольку соединения Урана, как правило, хорошо растворимы в водах с окислительной средой и плохо растворимы в водах с восстановительной средой (например, сероводородных).

Известно около 100 минералов Урана; промышленное значение имеют 12 из них. В ходе геологической истории содержание Урана в земной коре уменьшилось за счет радиоактивного распада; с этим процессом связано накопление в земной коре атомов Рb, He. Радиоактивный распад Урана играет важную роль в энергетике земной коры, являясь существенным источником глубинного тепла.

Физические свойства Урана. Уран по цвету похож на сталь, легко поддается обработке. Имеет три аллотропических модификации - α, β и γ с температурами фазовых превращений: α → β 668,8 °С, β → γ 772,2 °С; α-форма имеет ромбическую решетку (а = 2,8538Å, b = 5.8662Å, с = 4.9557Å), β-форма - тетрагональную решетку (при 720 °С а = 10,759Å, b = 5,656Å), γ-форма - объемноцентрированную кубическую решетку (при 850 °С а = 3,538Å). Плотность Урана в α-форме (25 °С) 19,05 г/см 3 ; t пл 1132 °С; t кип 3818 °С; теплопроводность (100-200 °С), 28,05 вт/(м·К) , (200-400 °С) 29,72 вт/(м·К) ; удельная теплоемкость (25 °С) 27,67 кдж/(кг·К) ; удельное электросопротивление при комнатной температуре около 3·10 -7 ом·см, при 600 °С 5,5·10 -7 ом·см; обладает сверхпроводимостью при 0,68 К; слабый парамагнетик, удельная магнитная восприимчивость при комнатной температуре 1,72·10 -6 .

Механические свойства Урана зависят от его чистоты, от режимов механической и термической обработки. Среднее значение модуля упругости для литого Уран 20,5·10 -2 Мн/м 2 ; предел прочности при растяжении при комнатной температуре 372-470 Мн/м 2 ; прочность повышается после закалки из β- и γ-фаз; средняя твердость по Бринеллю 19,6-21,6·10 2 Мн/м 2 .

Облучение потоком нейтронов (которое имеет место в ядерном реакторе) изменяет физико-механические свойства Урана: развивается ползучесть и повышается хрупкость, наблюдается деформация изделий, что заставляет использовать Уран в ядерных реакторах в виде различных урановых сплавов.

Уран - радиоактивный элемент. Ядра 235 U и 233 U делятся спонтанно, а также при захвате как медленных (тепловых), так и быстрых нейтронов с эффективным сечением деления 508·10 -24 см 2 (508 барн) и 533·10 -24 см 2 (533 барн) соответственно. Ядра 238 U делятся при захвате только быстрых нейтронов с энергией не менее 1 Мэв; при захвате медленных нейтронов 238 U превращается в 239 Рu, ядерные свойства которого близки к 235 U. Критическая масса Урана (93,5% 235 U) в водных растворах составляет менее 1 кг, для открытого шара - около 50 кг, для шара с отражателем - 15-23 кг; критическая масса 233 U- примерно 1/3 критической массы 235 U.

Химические свойства Урана. Конфигурация внешней электронной оболочки атома Урана 7s 2 6d l 5f 3 . Уран относится к реакционноспособным металлам, в соединениях проявляет степени окисления +3, +4, + 5, +6, иногда +2; наиболее устойчивы соединения U (IV) и U (VI). На воздухе медленно окисляется с образованием на поверхности пленки оксида (IV), которая не предохраняет металл от дальнейшего окисления. В порошкообразном состоянии Уран пирофорен и горит ярким пламенем. С кислородом образует оксид (IV) UO 2 , оксид (VI) UО 3 и большое число промежуточных оксидов, важнейший из которых U 3 O 8 . Эти промежуточные оксиды по свойствам близки к UO 2 и UO 3 . При высоких температуpax UO 2 имеет широкую область гомогенности от UO 1, 60 до UO 2,27 . С фтором при 500-600 °С образует тетрафторид UF 4 (зеленые игольчатые кристаллы, малорастворимые в воде и кислотах) и гексафторид UF 6 (белое кристаллическое вещество, возгоняющееся без плавления при 56,4 °С); с серой - ряд соединений, из которых наибольшее значение имеет US (ядерное горючее). При взаимодействии Урана с водородом при 220 °С получается гидрид UH 3 ; с азотом при температуре от 450 до 700 °С и атмосферном давлении - нитрид U 4 N 7 , при более высоком давлении азота и той же температуре можно получить UN, U 2 N 3 и UN 2 ; с углеродом при 750-800 °С - монокарбид UC, дикарбид UC 2 , а также U 2 С 3 ; с металлами образует сплавы различных типов. Уран медленно реагирует с кипящей водой с образованием UO 2 н Н 2 , с водяным паром - в интервале температур 150-250 °С; растворяется в соляной и азотной кислотах, слабо - в концентрированной плавиковой кислоте. Для U (VI) характерно образование иона уранила UO 2 2+ ; соли уранила окрашены в желтый цвет и хорошо растворимы в воде и минеральных кислотах; соли U (IV) окрашены в зеленый цвет и менее растворимы; ион уранила чрезвычайно способен к комплексообразованию в водных растворах как с неорганических, так и с органических веществами; наиболее важны для технологии карбонатные, сульфатные, фторидные, фосфатные и других комплексы. Известно большое число уранатов (солей не выделенной в чистом виде урановой кислоты), состав которых меняется в зависимости от условий получения; все уранаты имеют низкую растворимость в воде.

Уран и его соединения радиационно и химически токсичны. Предельно допустимая доза (ПДД) при профессиональном облучении 5 бэр в год.

Получение Урана. Уран получают из урановых руд, содержащих 0,05-0,5% U. Руды практически не обогащаются, за исключением ограниченного способа радиометрической сортировки, основанной на γ-излучении радия, всегда сопутствующего урану. В основном руды выщелачивают растворами серной, иногда азотной кислот или растворами соды с переводом Урана в кислый раствор в виде UО 2 SO 4 или комплексных анионов 4- , а в содовый раствор - в виде 4- . Для извлечения и концентрирования Урана из растворов и пульп, а также для очистки от примесей применяют сорбцию на ионообменных смолах и экстракцию органических растворителями (трибутилфосфат, алкилфосфорные кислоты, амины). Далее из растворов добавлением щелочи осаждают уранаты аммония или натрия или гидрооксид U(OH) 4 . Для получения соединений высокой степени чистоты технические продукты растворяют в азотной кислоте и подвергают аффинажным операциям очистки, конечными продуктами которых являются UO 3 или U 3 О 8 ; эти оксиды при 650-800 °С восстанавливаются водородом или диссоциированным аммиаком до UO 2 с последующим переводом его в UF 4 обработкой газообразным фтористым водородом при 500-600 °С. UF 4 может быть получен также при осаждении кристаллогидрата UF 4 ·nН 2 О плавиковой кислотой из растворов с последующим обезвоживанием продукта при 450 °С в токе водорода. В промышленности основные способом получения Уран из UF 4 является его кальциетермическим или магниетермическим восстановление с выходом Урана в виде слитков массой до 1,5 т. Слитки рафинируются в вакуумных печах.

Очень важным процессом в технологии Урана является обогащение его изотопом 235 U выше естественного содержания в рудах или выделение этого изотопа в чистом виде, поскольку именно 235 U - основные ядерное горючее; осуществляется это методами газовой термодиффузии, центробежными и другими методами, основанными на различии масс 238 U и 235 U; в процессах разделения Уран используется в виде летучего гексафторида UF 6 . При получении Урана высокой степени обогащения или изотопов учитываются их критические массы; наиболее удобный способ в этом случае - восстановление оксидов Урана кальцием; образующийся при этом шлак СаО легко отделяется от Урана растворением в кислотах. Для получения порошкообразного Урана, оксида (IV), карбидов, нитридов и других тугоплавких соединений применяются методы порошковой металлургии.

Применение Урана. Металлический Уран или его соединения используются в основном в качестве ядерного горючего в ядерных реакторах. Природная или малообогащенная смесь изотопов Урана применяется в стационарных реакторах атомных электростанций, продукт высокой степени обогащения - в ядерных силовых установках или в реакторах, работающих на быстрых нейтронах. 235 U является источником ядерной энергии в ядерном оружии. 238 U служит источником вторичного ядерного горючего - плутония.

Уран в организме. В микроколичествах (10 -5 -10 -8 %) обнаруживается в тканях растений, животных и человека. В золе растений (при содержании Уран в почве около 10 -4 %) его концентрация составляет 1,5·10 -5 %. В наибольшей степени Уран накапливается некоторыми грибами и водорослями (последние активно участвуют в биогенной миграции Урана по цепи вода - водные растения - рыба - человек). В организм животных и человека Уран поступает с пищей и водой в желудочно-кишечный тракт, с воздухом в дыхательные пути, а также через кожные покровы и слизистые оболочки. Соединения Уран всасываются в желудочно-кишечном тракте - около 1% от поступающего количества растворимых соединений и не более 0,1% труднорастворимых; в легких всасываются соответственно 50% и 20%. Распределяется Уран в организме неравномерно. Основное депо (места отложения и накопления) - селезенка, почки, скелет, печень и, при вдыхании труднорастворимых соединений, - легкие и бронхолегочные лимфатические узлы. В крови Уран (в виде карбонатов и комплексов с белками) длительно не циркулирует. Содержание Уран в органах и тканях животных и человека не превышает 10 -7 г/г. Так, кровь крупного рогатого скота содержит 1·10 -8 г/мл, печень 8·10 -8 г/г, мышцы 4·10 -11 г/г, селезенка 9·10 8-8 г/г. Содержание Урана в органах человека составляет: в печени 6·10 -9 г/г, в легких 6·10 -9 -9·10 -9 г/г, в селезенке 4,7·10 -7 г/г, в крови 4-10 -10 г/мл, в почках 5,3·10 -9 (корковый слой) и 1,3·10 -8 г/г (мозговой слой), в костях 1·10 -9 г/г, в костном мозге 1 -Ю -8 г/г, в волосах 1,3·10 -7 г/г. Уран, содержащийся в костной ткани, обусловливает ее постоянное облучение (период полувыведения Урана из скелета около 300 суток). Наименьшие концентрации Урана - в головном мозге и сердце (10 -10 г/г). Суточное поступление Урана с пищей и жидкостями - 1,9·10 -6 г, с воздухом - 7·10 -9 г. Суточное выведение Уран из организма человека составляет: с мочой 0,5·10 -7 - 5·10 -7 г, с калом - 1,4·10 -6 -1,8·10 -6 г, с волосами - 2·10 -8 г.

По данным Международной комиссии по радиационной защите, среднее содержание Урана в организме человека 9·10 -5 г. Эта величина для различных районов может варьировать. Полагают, что Уран необходим для нормальной жизнедеятельности животных и растений.

Токсическое действие Уран обусловлено его химические свойствами и зависит от растворимости: более токсичны уранил и других растворимые соединения Урана. Отравления Ураном и его соединениями возможны на предприятиях по добыче и переработке уранового сырья и других промышленного объектах, где он используется в технологическом процессе. При попадании в организм Уран действует на все органы и ткани, являясь общеклеточным ядом. Признаки отравления обусловлены преимущественным поражением почек (появление белка и сахара в моче, последующая олигурия); поражаются также печень и желудочно-кишечный тракт. Различают острые и хронические отравления; последние характеризуются постепенным развитием и меньшей выраженностью симптомов. При хронической интоксикации возможны нарушения кроветворения, нервной системы и др. Полагают, что молекулярный механизм действия Урана связан с его способностью подавлять активность ферментов.

УРАН (химический элемент) УРАН (химический элемент)

УРА́Н (лат. Uranium), U (читается «уран»), радиоактивный химический элемент с атомным номером 92, атомная масса 238,0289. Актиноид. Природный уран состоит из смеси трех изотопов: 238 U, 99,2739%, с периодом полураспада Т 1/2 = 4,51·10 9 лет, 235 U, 0,7024%, с периодом полураспада Т 1/2 = 7,13·10 8 лет, 234 U, 0,0057%, с периодом полураспада Т 1/2 = 2,45·10 5 лет. 238 U (уран-I, UI) и 235 U (актиноуран, АсU) являются родоначальниками радиоактивных рядов. Из 11 искусственно полученных радионуклидов с массовыми числами 227-240 долгоживущий 233 U (Т 1/2 = 1,62·10 5 лет), он получается при нейтронном облучении тория (см. ТОРИЙ) .
Конфигурация трех внешних электронных слоев 5s 2 p 6 d 10 f 3 6s 2 p 6 d 1 7 s 2 , уран относится к f -элементам. Расположен в IIIB группе в 7 периоде периодической системы элементов. В соединениях проявляет степени окисления +2, +3, +4, +5 и +6, валентности II, III, IV, V и VI.
Радиус нейтрального атома урана 0,156 нм, радиус ионов: U 3 + - 0,1024 нм, U 4 + - 0,089 нм, U 5 + - 0,088 нм и U 6+ - 0,083 нм. Энергии последовательной ионизации атома 6,19, 11,6, 19,8, 36,7 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,22.
История открытия
Уран был открыт в 1789 немецким химиком М. Г. Клапротом (см. КЛАПРОТ Мартин Генрих) при исследовании минерала «смоляной обманки». Назван им в честь планеты Уран, открытой У. Гершелем (см. ГЕРШЕЛЬ) в 1781. В металлическом состоянии уран получен в 1841 французским химиком Э. Пелиго (см. ПЕЛИГО Эжен Мелькьор) при восстановлении UCl 4 металлическим калием. Радиоактивные свойства урана обнаружил в 1896 француз А. Беккерель (см. БЕККЕРЕЛЬ Антуан Анри) .
Первоначально урану приписывали атомную массу 116, но в 1871 Д. И. Менделеев (см. МЕНДЕЛЕЕВ Дмитрий Иванович) пришел к выводу, что ее надо удвоить. После открытия элементов с атомными номерами от 90 до 103 американский химик Г. Сиборг (см. СИБОРГ Гленн Теодор) пришел к выводу, что эти элементы (актиноиды) (см. АКТИНОИДЫ) правильнее располагать в периодической системе в одной клетке с элементом №89 актинием. Такое расположение связано с тем, что у актиноидов происходит достройка 5f -электоронного подуровня.
Нахождение в природе
Уран - характерный элемент для гранитного слоя и осадочной оболочки земной коры. Содержание в земной коре 2,5·10 -4 % по массе. В морской воде концентрация урана менее 10 -9 г/л, всего в морской воде содержится от 10 9 до 10 10 тонн урана. В свободном виде уран в земной коре не встречается. Известно около 100 минералов урана, важнейшие из них настуран U 3 O 8 , уранинит (см. УРАНИНИТ) (U,Th)O 2 , урановая смоляная руда (содержит оксиды урана переменного состава) и тюямунит Ca[(UO 2) 2 (VO 4) 2 ]·8H 2 O.
Получение
Уран получают из урановых руд, содержащих 0,05-0,5% U. Извлечение урана начинается с получения концентрата. Руды выщелачивают растворами серной, азотной кислот или щелочью. В полученном растворе всегда содержатся примеси других металлов. При отделении от них урана, используют различия в их окислительно-восстановительных свойствах. Окислительно-восстановительные процессы сочетают с процессами ионного обмена и экстракции.
Из полученного раствора уран извлекают в виде оксида или тетрафторида UF 4 , методом металлотермии:
UF 4 + 2Mg = 2MgF 2 + U
Образовавшийся уран содержит в незначительных количествах примеси бор (см. БОР (химический элемент)) , кадмий (см. КАДМИЙ) и некоторых других элементов, так называемых реакторных ядов. Поглощая образующиеся при работе ядерного реактора нейтроны, они делают уран непригодным для использования в качестве ядерного горючего.
Чтобы избавиться от примесей, металлический уран растворяют в азотной кислоте, получая уранилнитрат UO 2 (NO 3) 2 . Уранилнитрат экстрагируют из водного раствора трибутилфосфатом. Продукт очистки из экстракта снова переводят в оксид урана или в тетрафторид, из которых вновь получают металл.
Часть урана получают регенерацией отработавшего в реакторе ядерного горючего. Все операции по регенерации урана проводят дистанционно.
Физические и химические свойства
Уран - серебристо-белый блестящий металл. Металлический уран существует в трех аллотропических (см. АЛЛОТРОПИЯ) модификациях. До 669°C устойчива a-модификация с орторомбической решеткой, параметры а = 0,2854нм, в = 0,5869 нм и с = 0,4956 нм, плотность 19,12 кг/дм 3 . От 669°C до 776°C устойчива b-модификация с тетрагональной решеткой (параметры а = 1,0758 нм, с = 0,5656 нм). До температуры плавления 1135°C устойчива g-модификация с кубической объемно-центрированной решеткой (а = 0,3525 нм). Температура кипения 4200°C.
Химическая активность металлического урана высока. На воздухе он покрывается пленкой оксида. Порошкообразный уран пирофорен, при сгорании урана и термическом разложении многих его соединений на воздухе образуется оксид урана U 3 O 8 . Если этот оксид нагревать в атмосфере водорода (см. ВОДОРОД) при температуре выше 500°C, образуется диоксид урана UO 2:
U 3 O 8 + Н 2 = 3UO 2 + 2Н 2 О
Если уранилнитрат UO 2 (NO 3) 2 нагреть при 500°C, то, разлагаясь, он образует триоксид урана UO 3 . Кроме оксидов урана стехиометрического состава UO 2 , UO 3 и U 3 О 8 , известен оксид урана состава U 4 O 9 и несколько метастабильных оксидов и оксидов переменного состава.
При сплавлении оксидов урана с оксидами других металлов образуются уранаты: К 2 UO 4 (уранат калия), СаUO 4 (уранат кальция), Na 2 U 2 O 7 (диуранат натрия).
Взаимодействуя с галогенами (см. ГАЛОГЕНЫ) , уран дает галогениды урана. Среди них гексафторид UF 6 представляет собой желтое кристаллическое вещество, легко сублимирующееся даже при слабом нагревании (40-60°C) и столь же легко гидролизующееся водой. Важнейшее практическое значение имеет гексафторид урана UF 6 . Получают его взаимодействием металлического урана, оксидов урана или UF 4 с фтором или фторирующими агентами BrF 3 , СCl 3 F (фреон-11) или ССl 2 F 2 (фреон-12):
U 3 O 8 + 6CCl 2 F 2 = UF 4 + 3COCl 2 + CCl 4 + Cl 2
UF 4 + F 2 = UF 6
или
U 3 O 8 + 9F 2 = 3UF 6 + 4O 2
Известны фториды и хлориды, отвечающие степеням окисления урана +3, +4, +5 и +6. Получены бромиды урана UBr 3 , UBr 4 и UBr 5 , а также иодиды урана UI 3 и UI 4 . Синтезированы такие оксигалогениды урана, как UO 2 Cl 2 UOCl 2 и другие.
При взаимодействии урана с водородом образуется гидрид урана UH 3 , обладающий высокой химической активностью. При нагревании гидрид разлагается, образуя водород и порошкообразный уран. При спекании урана с бором возникают, в зависимости от молярного отношения реагентов и условий проведения процесса, бориды UB 2 , UB 4 и UB 12 .
С углеродом (см. УГЛЕРОД) уран образует три карбида UC, U 2 C 3 и UC 2 .
Взаимодействием урана с кремнием (см. КРЕМНИЙ) получены силициды U 3 Si, U 3 Si 2 , USi, U 3 Si 5 , USi 2 и U 3 Si 2 .
Получены нитриды урана (UN, UN 2 , U 2 N 3) и фосфиды урана (UP, U 3 P 4 , UP 2). С серой (см. СЕРА) уран образует ряд сульфидов: U 3 S 5 , US, US 2 , US 3 и U 2 S 3 .
Металлический уран растворяется в HCl и HNO 3 , медленно реагирует с H 2 SO 4 и H 3 PO 4 . Возникают соли, содержащие катион уранила UO 2 2+ .
В водных растворах существуют соединения урана в степенях окисления от +3 до +6. Стандартный окислительный потенциал пары U(IV)/U(III) - 0,52 B, пары U(V)/U(IV) 0,38 B, пары U(VI)/U(V) 0,17 B, пары U(VI)/U(IV) 0,27. Ион U 3+ в растворе неустойчив, ион U 4+ стабилен в отсутствие воздуха. Катион UO 2 + нестабилен и в растворе диспропорционирует на U 4+ и UO 2 2+ . Ионы U 3+ имеют характерную красную окраску, ионы U 4+ - зеленую, ионы UO 2 2+ - желтую.
В растворах наиболее устойчивы соединения урана в степени окисления +6. Все соединения урана в растворах склонны к гидролизу и комплексообразованию, наиболее сильно - катионы U 4+ и UO 2 2+ .
Применение
Металлический уран и его соединения используются в основном в качестве ядерного горючего в ядерных реакторах. Малообогащенная смесь изотопов урана применяется в стационарных реакторах атомных электростанций. Продукт высокой степени обогащения - в ядерных реакторах, работающих на быстрых нейтронах. 235 U яыляется источником ядерной энергии в ядерном оружии. 238 U служит источником вторичного ядерного горючего - плутония.
Физиологическое действие
В микроколичествах (10 -5 -10 -8 %) обнаруживается в тканях растений, животных и человека. В наибольшей степени накапливается некоторыми грибами и водорослями. Соединения урана всасываются в желудочно-кишечном тракте (около 1%), в легких - 50%. Основные депо в организме: селезенка, почки, скелет, печень, легкие и бронхо-легочные лимфатические узлы. Содержание в органах и тканях человека и животных не превышает 10 -7 гг.
Уран и его соединения высокотоксичны. Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана ПДК в воздухе 0,015 мг/м 3 , для нерастворимых форм урана ПДК 0,075 мг/м 3 . При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Молекулярный механизм действия урана связан с его способностью подавлять активность ферментов. В первую очередь поражаются почки (появляются белок и сахар в моче, олигурия). При хронической интоксикации возможны нарушения кроветворения и нервной системы.


Энциклопедический словарь . 2009 .

Смотреть что такое "УРАН (химический элемент)" в других словарях:

    U (Uran, uranium; при О = 16 атомн. вес U = 240) элемент с наибольшим атомным весом; все элементы, по атомному весу, помещаются между водородом и ураном. Это тяжелейший член металлической подгруппы VI группы периодической системы (см. Хром,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Уран (U) Атомный номер 92 Внешний вид простого вещества Свойства атома Атомная масса (молярная масса) 238.0289 а. е. м. (г/моль) … Википедия

    Уран (лат. Uranium), U, радиоактивный химический элемент III группы периодической системы Менделеева, относится к семейству актиноидов, атомный номер 92, атомная масса 238,029; металл. Природный У. состоит из смеси трёх изотопов: 238U √ 99,2739%… … Большая советская энциклопедия

    Уран (хим. элемент) - УРАН (Uranium), U, радиоактивный химический элемент III группы периодической системы, атомный номер 92, атомная масса 238,0289; относится к актиноидам; металл, tпл 1135°C. Уран главный элемент атомной энергетики (ядерное топливо), используется в… … Иллюстрированный энциклопедический словарь Википедия

    - (греч. uranos небо). 1) бог неба, отец Сатурна, старейший из богов, по греч. мифол. 2) редкий металл, имеющий в чистом состоянии вид серебристых листочков. 3) большая планета, открытая Гершелем в 1781 г. Словарь иностранных слов, вошедших в… … Словарь иностранных слов русского языка

    Уран:* Уран (мифология) древнегреческий бог. Сын Геи * Уран (планета) планета Солнечной системы * Уран (музыкальный инструмент) древнетюркский и казахский музыкальный духовой инструмент * Уран (элемент) химический элемент * Операция… … Википедия

    - (Uranium), U, радиоактивный химический элемент III группы периодической системы, атомный номер 92, атомная масса 238,0289; относится к актиноидам; металл, tпл 1135шC. Уран главный элемент атомной энергетики (ядерное топливо), используется в… … Современная энциклопедия


(по Полингу) 1.38 U←U 4+ -1.38В
U←U 3+ -1.66В
U←U 2+ -0.1В 6, 5, 4, 3 Термодинамические свойства 19.05 / ³ 0.115 /( ·) 27.5 /( ·) 1405.5 12.6 / 4018 417 / 12.5 ³/ Кристаллическая решётка орторомбическая 2.850 Отношение c/a n/a n/a

История

Ещё в древнейшие времена (I-й век до нашей эры) природная урана использовалась для изготовления жёлтой глазури для .

Уран был открыт в 1789 немецким химиком Мартином Генрихом Клапротом (Klaproth) при исследовании минерала («урановая смолка»). Назван им в честь , открытой в 1781. В металлическом состоянии уран получен в 1841 французским химиком Эженом Пелиго при восстановлении UCl 4 металлическим калием. урана обнаружил в 1896 француз . Первоначально урану приписывали 116, но в 1871 пришел к выводу, что ее надо удвоить. После открытия элементов с атомными номерами от 90 до 103 американский химик Г.Сиборг пришел к выводу, что эти элементы () правильнее располагать в периодической системе в одной клетке с элементом № 89 . Такое расположение связано с тем, что у актиноидов происходит достройка 5f-электронного подуровня.

Нахождение в природе

Уран - характерный элемент для гранитного слоя и осадочной оболочки земной коры. Содержание в земной коре 2,5 10 -4 % по массе. В морской воде концентрация урана менее 10 -9 г/л, всего в морской воде содержится от 10 9 до 10 10 тонн урана. В свободном виде уран в земной коре не встречается. Известно около 100 минералов урана, важнейшие из них U 3 O 8 , уранинит (U,Th)O 2 , урановая смоляная руда (содержит оксиды урана переменного состава) и тюямунит Ca[(UO 2) 2 (VO 4) 2 ] 8H 2 O.

Изотопы

Природный Уран состоит из смеси трёх изотопов: 238 U - 99,2739%, период полураспада T 1 / 2 = 4,51Ї10 9 лет, 235 U - 0,7024% (T 1 / 2 = 7,13Ї10 8 лет) и 234 U - 0,0057% (T 1 / 2 = 2,48Ї10 5 лет).

Известно 11 искусственных радиоактивных изотопов с массовыми числами от 227 до 240.

Наиболее долгоживущий - 233 U (T 1 / 2 = 1,62Ї10 5 лет) получается при облучении тория нейтронами.

Изотопы урана 238 U и 235 U являются родоначальниками двух радиоактивных рядов.

Получение

Самая первая стадия уранового производства - концентрирование. Породу дробят и смешивают с водой. Тяжелые компоненты взвеси осаждаются быстрее. Если порода содержит первичные минералы урана, то они осаждаются быстро: это тяжелые минералы. Вторичные минералы элемента № 92 легче, в этом случае раньше оседает тяжелая пустая порода. (Впрочем, далеко не всегда она действительно пустая; в ней могут быть многие полезные элементы, в том числе и уран).

Следующая стадия - выщелачивание концентратов, перевод элемента № 92 в раствор. Применяют кислотное и щелочное выщелачивание. Первое - дешевле, поскольку для извлечения урана используют . Но если в исходном сырье, как, например, в урановой смолке , уран находится в четырехвалентном состоянии, то этот способ неприменим: четырехвалентный уран в серной кислоте практически не растворяется. И либо нужно прибегнуть к щелочному выщелачиванию, либо предварительно окислять уран до шестивалентного состояния.

Не применяют кислотное выщелачивание и в тех случаях, если урановый концентрат содержит или . Слишком много кислоты приходится тратить на их растворение, и в этих случаях лучше воспользоваться ( ).

Проблему выщелачивания урана из решает кислородная продувка. В нагретую до 150 °C смесь урановой руды с минералами подают поток . При этом из сернистых минералов образуется , которая и вымывает уран.

На следующем этапе из полученного раствора нужно избирательно выделить уран. Современные методы - и - позволяют решить эту проблему.

Раствор содержит не только уран, но и другие . Некоторые из них в определенных условиях ведут себя так же, как уран: экстрагируются теми же растворителями, оседают на тех же ионообменных смолах, выпадают в осадок при тех же условиях. Поэтому для селективного выделения урана приходится использовать многие окислительно-восстановительные реакции, чтобы на каждой стадии избавляться от того или иного нежелательного попутчика. На современных ионообменных смолах уран выделяется весьма селективно.

Методы ионного обмена и экстракции хороши еще и тем, что позволяют достаточно полно извлекать уран из бедных растворов, в литре которых лишь десятые доли грамма элемента № 92.

После этих операций уран переводят в твердое состояние - в один из оксидов или в тетрафторид UF 4 . Но этот уран еще надо очистить от примесей с большим сечением захвата тепловых нейтронов - , . Их содержание в конечном продукте не должно превышать стотысячных и миллионных долей процента. Вот и приходится уже полученный технически чистый продукт еще раз растворять - на этот раз в . Уранилнитрат UO 2 (NO 3) 2 при экстракции трибутил-фосфатом и некоторыми другими веществами дополнительно очищается до нужных кондиций. Затем это вещество кристаллизуют (или осаждают пероксид UO 4 ·2H 2 O) и начинают осторожно прокаливать. В результате этой операции образуется трехокись урана UO 3 , которую восстанавливают до UO 2 .

Это вещество - предпоследнее на пути от руды к металлу. При температуре от 430 до 600 °C оно реагирует с сухим фтористым водородом и превращается в тетрафторид UF 4 . Именно из этого соединения обычно получают металлический уран. Получают с помощью или обычным .

Физические свойства

Уран очень тяжелый, серебристо-белый глянцеватый металл. В чистом виде он немного мягче стали, ковкий, гибкий, обладает небольшими парамагнитными свойствами. Уран имеет три аллотропные формы: альфа (призматическая, стабильна до 667.7 °C), бета (четырехугольная, стабильна от 667.7 до 774.8 °C), гамма (с объемно центрированной кубической структурой, существующей от 774.8 °C до точки плавления).

Химические свойства

Химическая активность металлического урана высока. На воздухе он покрывается радужной пленкой . Порошкообразный уран , он самовозгорается при температуре 150-175 °C. При сгорании урана и термическом разложении многих его соединений на воздухе образуется оксид урана U 3 O 8 . Если этот оксид нагревать в атмосфере при температуре выше 500 °C, образуется UO 2 . При сплавлении оксидов урана с оксидами других металлов образуются уранаты: К 2 UO 4 (уранат калия), СаUO 4 (уранат кальция), Na 2 U 2 O 7 (диуранат натрия).

Применение

Ядерное топливо

Наибольшее применение имеет урана 235 U, в котором возможна самоподдерживающаяся . Поэтому этот изотоп используется как топливо в , а также в (критическая масса около 48 кг). Выделение изотопа U 235 из природного урана - сложная технологическая проблема, (см. ). Изотоп U 238 способен делиться под влиянием бомбардировки высокоэнергетическими нейтронами, эту его особенность используют для увеличения мощности (используются нейтроны, порожденные термоядерной реакцией). В результате захвата нейтрона с последующим β-распадом 238 U может превращаться в 239 , который затем используется как ядерное топливо.

Уран-233 искуственно получаемый в реакторах (посредством облучения нейтронами и превращающегося в и затем в уран-233) является ядерным топливом для атомных электростанций и производства атомных бомб (критическая масса около 16 кг). Уран-233 так же наиболее перспективное топливо для газофазных ядерных ракетных двигателей.

Другие сферы применения

  • Небольшая добавка урана придаёт красивый зеленовато-жёлтый оттенок стеклу.
  • Карбид урана-235 в сплаве с карбидом ниобия и карбидом циркония применяется в качестве топлива для ядерных реактивных двигателей (рабочее тело - водород+гексан).
  • Сплавы железа и обедненного урана (уран-238) применяются как мощные магнитострикционные материалы.
  • В начале ХХ века уранилнитрат широко применялся в качестве вирирующего агента для получения тонированных фотографических отпечатков.

Обеднённый уран

После извлечения U-235 из природного урана, оставшийся материал носит название «обедненный уран», так как он обеднен 235-ым изотопом. По некоторым данным в США хранится около 560 000 тонн обедненного гексафторида урана (UF 6). Обедненный уран в два раза менее радиоактивен, чем природный уран, в основном за счет удаления из него U-234. Из-за того, что основное использование урана - производство энергии, обедненный уран бесполезный продукт с низкой экономическое ценностью.

В основном его использование связано с большой плотностью урана и относительно низкой его стоимостью: использование его для радиационной защиты (как это не странно) и как балластная масса в аэрокосмических применениях, таких как рулевые поверхности летательных аппаратов. В каждом самолете содержится 1500 кг обедненного урана для этих целей. Еще этот материал применяется в высокоскоростных роторах гироскопов, больших маховиках, как балласт в космических спускаемых аппаратах и гоночных яхтах, при бурении нефтяных скважин.

Сердечники бронебойных снарядов

Самое известное применение урана - в качестве сердечников для американских . При сплавлении с 2% или 0.75% и термической обработке (быстрая закалка разогретого до 850 °С металла в воде или масле, дальнейшее выдерживание при 450 °С 5 часов) металлический уран становится тверже и прочнее (прочность на разрыв больше 1600 МПа, при том, что у чистого урана он равен 450 МПа). В сочетании с большой плотностью, это делает закаленную урановую болванку чрезвычайно эффективным средством для пробивания брони, аналогичным по эффективности более дорогому . Процесс разрушения брони сопровождается измельчением в пыль урановой болванки и воспламенением ее на воздухе с другой стороны брони. Около 300 тонн обедненного урана остались на поле боя во время операции «Буря в Пустыне» (по большей части это остатки снарядов 30-мм пушки GAU-8 штурмовых самолетов A-10, каждый снаряд содержит 272 г уранового сплава).

Такие снаряды были использованы войсками НАТО в боевых действиях на территории Югославии. После их применения обсуждалась экологическая проблема радиационного загрязнения территории страны.

Обедненный уран используется в современной танковой броне, например, танка .

Физиологическое действие

В микроколичествах (10 -5 -10 -8 %) обнаруживается в тканях растений, животных и человека. В наибольшей степени накапливается некоторыми грибами и водорослями. Соединения урана всасываются в желудочно-кишечном тракте (около 1 %), в легких - 50 %. Основные депо в организме: селезенка, и бронхо-легочные . Содержание в органах и тканях человека и животных не превышает 10 -7 г.

Уран и его соединения токсичны . Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана ПДК в воздухе 0,015 мг/м 3 , для нерастворимых форм урана 0,075 мг/м 3 . При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Молекулярный механизм действия урана связан с его способностью подавлять активность . В первую очередь поражаются (появляются белок и сахар в моче, ). При хронической возможны нарушения кроветворения и нервной системы.

Добыча урана в мире

Согласно «Красной книге по урану», выпущенной , в 2005 добыто 41250 тонн урана (в 2003 - 35492 тонны). Согласно данным ОЭСР, в мире функционирует 440 коммерческого назначения, которые потребляют в год 67 тыс. тонн урана. Это означает, что его производство обеспечивает лишь 60 % объема его потребления (остальное извлекается из старых ядерных боеголовок).

Добыча по странам в тоннах по содержанию U на 2005-2006 гг.

Добыча в России

Остальные 7 % получают методом подземного выщелачивания ЗАО «Далур» () и ОАО «Хиагда» ().

Полученные руды и урановый концентрат перерабатываются на Чепецком механическом заводе.

См. также

Ссылки


Уран не очень типичный актиноид, известно пять его валентных состояний - от 2+ до 6+ . Некоторые соединения урана имеют характерную окраску. Так, растворы трехвалентного урана - красного цвета, четырехвалентного - зеленого, а шестивалентный уран - он существует в форме уранил-иона (UO 2) 2+ - окрашивает растворы в желтый цвет... Тот факт, что шестивалентный уран образует соединения со многими органическими комплексообразователями, оказался очень важным для технологии извлечения элемента № 92.

Характерно, что внешняя электронная оболочка ионов урана всегда заполнена целиком; валентные электроны находятся в предыдущем электронном слое, в подоболочке 5f. Если сравнивать уран с другими элементами, то очевидно, что больше всего на него похож плутоний. Основное различие между ними - большой ионный радиус урана. Кроме того, плутоний наиболее устойчив в четырехвалентном состоянии, а уран - в шестивалентном. Это помогает разделить их, что очень важно: ядерное горючее плутоний-239 получают исключительно из урана, балластного с точки зрения энергетики урана-238. Плутоний образуется в массе урана, и их надо разделить!

Впрочем, раньше нужно получить эту самую массу урана, пройдя длинную технологическую цепочку, начинающуюся с руды. Как правило, многокомпонентной, бедной ураном руды.

Легкий изотоп тяжелого элемента

Рассказывая о получении элемента № 92, мы умышленно опустили одну важную стадию. Как известно, не всякий уран способен поддерживать цепную ядерную реакцию. Уран-238, на долю которого в природной смеси изотопов приходится 99,28%, на это не способен. Из-за того и превращают в плутоний уран-238, а природную смесь изотопов урана стремятся либо разделить, либо обогатить изотопом уран-235, способным делиться тепловыми нейтронами.

Способов разделения урана-235 и урана-238 разработано немало. Чаще всего пользуются методом газовой диффузии. Суть его в том, что если через пористую перегородку пропускать смесь двух газов, то легкий будет проходить быстрее. Еще в 1913 г. Ф. Астон таким путем частично разделил изотопы неона .

Большинство соединений урана при нормальных условиях - твердые тела и в газообразное состояние могут быть переведены только при очень высоких температурах, когда ни о каких тонких процессах разделения изотопов не может идти и речи. Однако бесцветное соединение урана с фтором - гексафторид UF 6 возгоняется уже при 56,5°С (при атмосферном давлении). UF 6 - самое летучее соединение урана, и оно лучше всего подходит для разделения его изотопов методом газовой диффузии.

Гексафториду урана свойственна большая химическая активность. Коррозия труб, насосов, емкостей, взаимодействие со смазкой механизмов - небольшой, но внушительный перечень неприятностей, которые пришлось преодолеть создателям диффузионных заводов. Встретились трудности и посерьезнее.

Гексафторид урана, получаемый фторированием естественной смеси изотопов урана, с «диффузионной» точки зрения можно рассматривать как смесь двух газов с очень близкими молекулярными массами - 349 (235+19*6) и 352 (238+19*6). Максимальный теоретический коэффициент разделения на одной диффузионной ступени для газов, столь незначительно отличающихся по молекулярной массе, равен всего 1,0043. В реальных условиях эта величина еще меньше. Получается, что повысить концентрацию урана-235 от 0,72 до 99% можно только с помощью нескольких тысяч диффузионных ступеней. Поэтому заводы по разделению изотопов урана занимают территорию в несколько десятков гектаров. Площадь пористых перегородок в разделительных каскадах заводов - величина примерно того же порядка.

Коротко о других изотопах урана

В естественный уран, кроме урана-235 и урана-238, входит уран-234. Содержание этого редкого изотопа выражается числом с четырьмя нулями после запятой. Гораздо доступнее искусственный изотоп - уран-233. Его получают, облучая в нейтронном потоке ядерного реактора торий:

232 90 Th + 10n → 233 90 Th -β-→ 233 91 Pa -β-→ 233 92 U
По всем правилам ядерной физики уран-233, как изотоп нечетный, делится тепловыми нейтронами. И самое главное, в реакторах с ураном-233 может происходить (и происходит) расширенное воспроизводство ядерного горючего. В обычном реакторе на тепловых нейтронах! Расчеты показывают, что при выгорании в ториевом реакторе килограмма урана-233 в нем же должно накопиться 1,1 кг нового урана-233. Чудо, да и только! Сожгли килограмм горючего, а горючего-то не убавилось.

Впрочем, подобные чудеса возможны лишь с ядерным горючим.

Уран-ториевый цикл в реакторах на тепловых нейтронах - главный конкурент уран-плутониевого цикла воспроизводства ядерного горючего в реакторах на быстрых нейтронах... Собственно, только из-за этого отнесли к числу стратегических материалов элемент № 90 - торий.

Другие искусственные изотопы урана не играют заметной роли. Стоит упомянуть еще лишь об уране-239 - первом изотопе в цепи превращений уран-238 плутоний-239. Его период полураспада всего 23 минуты.

Изотопы урана с массовым числом больше 240 в современных реакторах не успевают образоваться. Слишком мало время жизни урана-240, и он распадается, не успев захватить нейтрон.

В сверхмощных нейтронных потоках термоядерного взрыва ядро урана за миллионную долю секунды успевает захватить до 19 нейтронов. При этом рождаются изотопы урана с массовыми числами от 239 до 257. Об их существовании узнали по появлению в продуктах термоядерного взрыва далеких трансурановых элементов - потомков тяжелых изотопов урана. Сами «основатели рода» слишком неустойчивы к бета-распаду и переходят в высшие элементы задолго до извлечения продуктов ядерных реакций из перемешанной взрывом породы.

В современных тепловых реакторах сгорает уран-235. В уже существующих реакторах на быстрых нейтронах освобождается энергия ядер распространенного изотопа - урана-238, и если энергия - подлинное богатство, то урановые ядра уже в недалеком будущем облагодетельствуют человечество: энергия элемента N° 92 станет основой нашего существования.

Жизненно важно сделать так, чтобы уран и его производные сгорали только в атомных реакторах мирных энергетических установок, сгорали медленно, без дыма и пламени.

ЕЩЕ ОДИН ИСТОЧНИК УРАНА. В наши дни им стала морская вода. Уже действуют опытно-промышленные установки для извлечения урана из воды специальными сорбентами: окисью титана или акриловым волокном, обработанным определенными реактивами.

КТО СКОЛЬКО. В начале 80-х годов производство урана в капиталистических странах составляло около 50 000 г в год (в пересчете на U3Os). Примерно треть этого количества давала промышленность США. На втором месте - Канада, далее ЮАР. Нигор, Габон, Намибия. Из европейских стран больше всего урана и его соединений производит Франция, однако ее доля была почти в семь раз меньше, чем США.

НЕТРАДИЦИОННЫЕ СОЕДИНЕНИЯ. Хотя не лишено оснований утверждение о том, что в наши дни химия урана и плутония изучена лучше, чем химия таких традиционных элементов, как железо, однако и в наши дни химики получают новые урановые соединения. Так, в 1977 г. журнал «Радиохимия» т. XIX, вып. 6 сообщил о двух новых соединениях уранила. Их состав - MU02(S04)2-SH20, где М - ион двухвалентного марганца или кобальта. О том, что новые соединения - именно двойные соли, а не смесь двух похожих солей, свидетельствовали рентгенограммы.

В сообщении посла Ирака в ООН Мохаммеда Али аль-Хакима от 9 июля говорится, что в распоряжение экстремистов ИГИЛ (Исламское государство Ирака и Леванта) . МАГАТЭ (Международное агентство по атомной энергии) поспешило заявить, что использованные Ираком ранее ядерные вещества имеют низкие токсические свойства, а потому захваченные исламистами материалы .

Источник в правительстве США, знакомый с ситуацией, сообщил агентству Reuters, что похищенный боевиками уран, вероятнее всего, не является обогащённым, поэтому едва ли может быть использован для изготовления ядерного оружия. Власти Ирака официально уведомили Организацию Объединённых Наций об этом инциденте и призвали «предотвратить угрозу его применения», сообщает РИА «Новости».

Соединения урана крайне опасны. О том, чем именно, а также о том, кто и как может производить ядерное топливо, рассказывает АиФ.ru.

Что такое уран?

Уран — химический элемент с атомным номером 92, серебристо-белый глянцеватый металл, периодической системе Менделеева обозначается символом U. В чистом виде он немного мягче стали, ковкий, гибкий, содержится в земной коре (литосфере) и в морской воде и в чистом виде практически не встречается. Из изотопов урана изготавливают ядерное топливо.

Уран — тяжёлый, серебристо-белый глянцеватый металл. Фото: Commons.wikimedia.org / Original uploader was Zxctypo at en.wikipedia.

Радиоактивность урана

В 1938 году немецкие физики Отто Ган и Фриц Штрассман облучили ядро урана нейтронами и сделали открытие: захватывая свободный нейтрон, ядро изотопа урана делится и выделяет огромную энергию за счёт кинетической энергии осколков и излучения. В 1939-1940 годах Юлий Харитон и Яков Зельдович впервые теоретически объяснили, что при небольшом обогащении природного урана ураном-235 можно создать условия для непрерывного деления атомных ядер, то есть придать процессу цепной характер.

Что такое обогащённый уран?

Обогащённый уран — это уран, который получают при помощи технологического процесса увеличения доли изотопа 235U в уране. В результате природный уран разделяют на обогащённый уран и обеднённый. После извлечения 235U и 234U из природного урана оставшийся материал (уран-238) носит название «обеднённый уран», так как он обеднён 235-м изотопом. По некоторым данным, в США хранится около 560 000 тонн обеднённого гексафторида урана (UF6). Обеднённый уран в два раза менее радиоактивен, чем природный, в основном за счёт удаления из него 234U. Из-за того что основное использование урана — производство энергии, обеднённый уран — малополезный продукт с низкой экономической ценностью.

В ядерной энергетике используют только обогащённый уран. Наибольшее применение имеет изотоп урана 235U, в котором возможна самоподдерживающаяся цепная ядерная реакция. Поэтому этот изотоп используют как топливо в ядерных реакторах и в ядерном оружии. Выделение изотопа U235 из природного урана — сложная технология, осуществлять которую под силу не многим странам. Обогащение урана позволяет производить атомное ядерное оружие — однофазные или одноступенчатые взрывные устройства, в которых основной выход энергии происходит от ядерной реакции деления тяжёлых ядер с образованием более лёгких элементов.

Уран-233, искусственно получаемый в реакторах из тория (торий-232 захватывает нейтрон и превращается в торий-233, который распадается в протактиний-233 и затем в уран-233), может в будущем стать распространённым ядерным топливом для атомных электростанций (уже сейчас существуют реакторы, использующие этот нуклид в качестве топлива, например KAMINI в Индии) и производства атомных бомб (критическая масса около 16 кг).

Сердечник снаряда калибра 30 мм (пушки GAU-8 самолёта A-10) диаметром около 20 мм из обеднённого урана. Фото: Commons.wikimedia.org / Original uploader was Nrcprm2026 at en.wikipedia

В каких странах производят обогащённый уран?

  • Франция
  • Германия
  • Голландия
  • Англия
  • Япония
  • Россия
  • Китай
  • Пакистан
  • Бразилия

10 стран, дающих 94 % мировой добычи урана. Фото: Commons.wikimedia.org / KarteUrangewinnung

Чем опасны соединения урана?

Уран и его соединения токсичны. Особенно опасны аэрозоли урана и его соединений. Для аэрозолей растворимых в воде соединений урана предельно допустимая концентрация (ПДК) в воздухе 0,015 мг/м³, для нерастворимых форм урана ПДК — 0,075 мг/м³. При попадании в организм уран действует на все органы, являясь общеклеточным ядом. Уран практически необратимо, как и многие другие тяжёлые металлы, связывается с белками, прежде всего, с сульфидными группами аминокислот, нарушая их функцию. Молекулярный механизм действия урана связан с его способностью подавлять активность ферментов. В первую очередь поражаются почки (появляются белок и сахар в моче, олигурия). При хронической интоксикации возможны нарушения кроветворения и нервной системы.

Применение урана в мирных целях

  • Небольшая добавка урана придаёт красивую жёлто-зелёную окраску стеклу.
  • Уран натрия используется как жёлтый пигмент в живописи.
  • Соединения урана применялись как краски для живописи по фарфору и для керамических глазурей и эмалей (окрашивают в цвета: жёлтый, бурый, зелёный и чёрный, в зависимости от степени окисления).
  • В начале XX века уранилнитрат широко применялся для усиления негативов и окрашивания (тонирования) позитивов (фотографических отпечатков) в бурый цвет.
  • Сплавы железа и обеднённого урана (уран-238) применяются как мощные магнитострикционные материалы.

Изотоп — разновидности атомов химического элемента, которые имеют одинаковый атомный (порядковый) номер, но при этом разные массовые числа.

Элемент III группы таблицы Менделеева, принадлежащий к актиноидам; тяжёлый слаборадиоактивный металл. Торий имеет ряд областей применения, в которых подчас играет незаменимую роль. Положение этого металла в периодической системе элементов и структура ядра предопределили его применение в области мирного использования атомной энергии.

*** Олигурия (от греч. oligos — малый и ouron — моча) — уменьшение количества отделяемой почками мочи.